A geometrical interpretation of infinite wreath powers
Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 250-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P. Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal closure of one of the generators is locally soluble.
Keywords: 2-generator groups, soluble groups, locally soluble groups, wreath products, infinite wreath products, graphs, automorphisms of graphs.
@article{ADM_2014_18_2_a6,
     author = {Vahagn H. Mikaelian},
     title = {A geometrical interpretation of infinite wreath powers},
     journal = {Algebra and discrete mathematics},
     pages = {250--267},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a6/}
}
TY  - JOUR
AU  - Vahagn H. Mikaelian
TI  - A geometrical interpretation of infinite wreath powers
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 250
EP  - 267
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a6/
LA  - en
ID  - ADM_2014_18_2_a6
ER  - 
%0 Journal Article
%A Vahagn H. Mikaelian
%T A geometrical interpretation of infinite wreath powers
%J Algebra and discrete mathematics
%D 2014
%P 250-267
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a6/
%G en
%F ADM_2014_18_2_a6
Vahagn H. Mikaelian. A geometrical interpretation of infinite wreath powers. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 250-267. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a6/

[1] R. Guralnick, B. Kunyavskii, E. Plotkin, A. Shalev, “Thompson-like characterizations of the solvable radical”, J. Algebra, 300:1 (2006), 363–375 | DOI | MR | Zbl

[2] R. Guralnick, E. Plotkin, A. Shalev, “Burnside-type problems related to solvability”, Internat. J. Algebra Comput., 17:5–6 (2007), 1033–1048 | DOI | MR | Zbl

[3] S. Bachmut, H. Y. Mochizuki, D. Walkup, “A nonsolvable group of exponent 5”, Bull. Amer. Math., Soc., 76:3 (1970), 638–640 | DOI | MR | Zbl

[4] G. Baumslag, L. G. Kovacs, B. H. Neumann, “On products of normal subgroups”, Acta Sci. Math., 26 (1965), 145–147 | MR | Zbl

[5] P. Hall, “Some constructions for locally finite groups”, J. Lond. Math. Soc., 34 (1959), 305–319 | DOI | MR | Zbl

[6] P. Hall, “The Frattini subgroups of finitely generated groups”, Proc. London Math. Soc., 11:3 (1961), 327–352 | DOI | MR | Zbl

[7] P. Hall, “Wreath powers and characteristically simple groups”, Proc. Camb. Philos. Soc., 58 (1962), 170–184 | DOI | MR | Zbl

[8] P. Hall, “On non-strictly simple groups”, Proc. Camb. Philos. Soc., 59 (1963), 531–533 | DOI | MR | Zbl

[9] P. Hall, “On the embedding of a group into a join of given groups”, J. Austral. Math.Soc., 17 (1974), 434–495 | DOI | MR | Zbl

[10] H. Heineken, “Engelsche Elemente der Länge drei”, Illinois J. Math., 5 (1961), 681–707 | MR | Zbl

[11] G. Higman, “A finitely related group with an isomorphic proper factor group”, J. London Math. Soc., 26 (1951), 59–61 | DOI | MR | Zbl

[12] L. G. Kovács, B. H. Neumann, “An embedding theorem for some countable groups”, Acta Sci. Math. (Szegel), 26 (1965), 139–142 | MR | Zbl

[13] V. H. Mikaelian, “Subnormal embedding theorems for groups”, J. London Math. Soc., 62 (2000), 398–406 | DOI | MR | Zbl

[14] V. H. Mikaelian, “On embeddings of countable generalized soluble groups in two-generated groups”, J. Algebra, 250 (2002), 1–17 | DOI | MR | Zbl

[15] V. H. Mikaelian, “Infinitely many not locally soluble $SI^*$-groups”, Ricerche di Matematica, 52, Univ. Studi Napoli, Naples, 2003, 1–19 | MR

[16] V. H. Mikaelian, “Metabelian varieties of groups and wreath products of abelian groups”, J. Algebra, 313:2 (2007), 455–485 | DOI | MR | Zbl

[17] V. H. Mikaelian, “On finitely generated soluble non-Hopfian groups”, Fundam. Prikl. Mat., 14:8 (2009), 185–202 (Russian and English) | MR

[18] V. H. Mikaelian, “A problem from the Kourovka notebook on embeddings of the group $Q$”, Journal of Mathematical Sciences, 186:5 (2012), 781–784 | DOI | MR | Zbl

[19] V. H. Mikaelian, A. Yu. Ol'shanskii, “On abelian subgroups of finitely generated metabelian groups”, Journal of Group Theory, 16 (2013), 695–705 | MR | Zbl

[20] Hanna Neumann, Varieties of Groups, Springer-Verlag, Berlin, 1967 | MR | Zbl

[21] A. Yu. Ol'shanskii, D. Osin, M. Sapir, “Lacunary hyperbolic groups”, With an appendix by Michael Kapovich and Bruce Kleiner, Geom. Topol., 13:4 (2009), 2051–2140 | DOI | MR | Zbl

[22] B. I. Plotkin, “Generalized soluble and generalized nilpotent groups”, Am. Math. Soc., Translat., II. Ser., 17 (1961), 29–115 | MR | Zbl

[23] Yu. P. Razmislov, “On Engel Lee Algebras”, Algebra i logika, 10:1 (1971), 33–44 (Russian) | MR

[24] Yu. P. Razmislov, “The Hall–Higman Problem”, Izv. Akad. Nauk. SSSR Ser. Mat., 42 (1978), 833–867 (Russian) | MR

[25] D. J. S. Robinson, A Course in the Theory of Groups, 2nd edition, Springer-Verlag, New York–Berlin–Heidelberg, 1996 | MR

[26] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Springer-Verlag, Berlin, 1972

[27] J. Thompson, “Non-solvable finite groups all of whose local subgroups are solvable”, Bull. Amer. Math. Soc., 74 (1968), 383-437 | DOI | MR | Zbl