Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2014_18_2_a6, author = {Vahagn H. Mikaelian}, title = {A geometrical interpretation of infinite wreath powers}, journal = {Algebra and discrete mathematics}, pages = {250--267}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a6/} }
Vahagn H. Mikaelian. A geometrical interpretation of infinite wreath powers. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 250-267. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a6/
[1] R. Guralnick, B. Kunyavskii, E. Plotkin, A. Shalev, “Thompson-like characterizations of the solvable radical”, J. Algebra, 300:1 (2006), 363–375 | DOI | MR | Zbl
[2] R. Guralnick, E. Plotkin, A. Shalev, “Burnside-type problems related to solvability”, Internat. J. Algebra Comput., 17:5–6 (2007), 1033–1048 | DOI | MR | Zbl
[3] S. Bachmut, H. Y. Mochizuki, D. Walkup, “A nonsolvable group of exponent 5”, Bull. Amer. Math., Soc., 76:3 (1970), 638–640 | DOI | MR | Zbl
[4] G. Baumslag, L. G. Kovacs, B. H. Neumann, “On products of normal subgroups”, Acta Sci. Math., 26 (1965), 145–147 | MR | Zbl
[5] P. Hall, “Some constructions for locally finite groups”, J. Lond. Math. Soc., 34 (1959), 305–319 | DOI | MR | Zbl
[6] P. Hall, “The Frattini subgroups of finitely generated groups”, Proc. London Math. Soc., 11:3 (1961), 327–352 | DOI | MR | Zbl
[7] P. Hall, “Wreath powers and characteristically simple groups”, Proc. Camb. Philos. Soc., 58 (1962), 170–184 | DOI | MR | Zbl
[8] P. Hall, “On non-strictly simple groups”, Proc. Camb. Philos. Soc., 59 (1963), 531–533 | DOI | MR | Zbl
[9] P. Hall, “On the embedding of a group into a join of given groups”, J. Austral. Math.Soc., 17 (1974), 434–495 | DOI | MR | Zbl
[10] H. Heineken, “Engelsche Elemente der Länge drei”, Illinois J. Math., 5 (1961), 681–707 | MR | Zbl
[11] G. Higman, “A finitely related group with an isomorphic proper factor group”, J. London Math. Soc., 26 (1951), 59–61 | DOI | MR | Zbl
[12] L. G. Kovács, B. H. Neumann, “An embedding theorem for some countable groups”, Acta Sci. Math. (Szegel), 26 (1965), 139–142 | MR | Zbl
[13] V. H. Mikaelian, “Subnormal embedding theorems for groups”, J. London Math. Soc., 62 (2000), 398–406 | DOI | MR | Zbl
[14] V. H. Mikaelian, “On embeddings of countable generalized soluble groups in two-generated groups”, J. Algebra, 250 (2002), 1–17 | DOI | MR | Zbl
[15] V. H. Mikaelian, “Infinitely many not locally soluble $SI^*$-groups”, Ricerche di Matematica, 52, Univ. Studi Napoli, Naples, 2003, 1–19 | MR
[16] V. H. Mikaelian, “Metabelian varieties of groups and wreath products of abelian groups”, J. Algebra, 313:2 (2007), 455–485 | DOI | MR | Zbl
[17] V. H. Mikaelian, “On finitely generated soluble non-Hopfian groups”, Fundam. Prikl. Mat., 14:8 (2009), 185–202 (Russian and English) | MR
[18] V. H. Mikaelian, “A problem from the Kourovka notebook on embeddings of the group $Q$”, Journal of Mathematical Sciences, 186:5 (2012), 781–784 | DOI | MR | Zbl
[19] V. H. Mikaelian, A. Yu. Ol'shanskii, “On abelian subgroups of finitely generated metabelian groups”, Journal of Group Theory, 16 (2013), 695–705 | MR | Zbl
[20] Hanna Neumann, Varieties of Groups, Springer-Verlag, Berlin, 1967 | MR | Zbl
[21] A. Yu. Ol'shanskii, D. Osin, M. Sapir, “Lacunary hyperbolic groups”, With an appendix by Michael Kapovich and Bruce Kleiner, Geom. Topol., 13:4 (2009), 2051–2140 | DOI | MR | Zbl
[22] B. I. Plotkin, “Generalized soluble and generalized nilpotent groups”, Am. Math. Soc., Translat., II. Ser., 17 (1961), 29–115 | MR | Zbl
[23] Yu. P. Razmislov, “On Engel Lee Algebras”, Algebra i logika, 10:1 (1971), 33–44 (Russian) | MR
[24] Yu. P. Razmislov, “The Hall–Higman Problem”, Izv. Akad. Nauk. SSSR Ser. Mat., 42 (1978), 833–867 (Russian) | MR
[25] D. J. S. Robinson, A Course in the Theory of Groups, 2nd edition, Springer-Verlag, New York–Berlin–Heidelberg, 1996 | MR
[26] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Springer-Verlag, Berlin, 1972
[27] J. Thompson, “Non-solvable finite groups all of whose local subgroups are solvable”, Bull. Amer. Math. Soc., 74 (1968), 383-437 | DOI | MR | Zbl