Morita equivalence for partially ordered monoids and po-$\Gamma$-semigroups with unities
Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 234-249.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that operator pomonoids of a po-$\Gamma$-semigroup with unities are Morita equivalent pomonoids. Conversely, we show that if $L$ and $R$ are Morita equivalent pomonoids then a po-$\Gamma$-semigroup $A$ with unities can be constructed such that left and right operator pomonoids of $A$ are $Pos$-isomorphic to $L$ and $R$ respectively. Using this nice connection between po-$\Gamma$-semigroups and Morita equivalence for pomonoids we, in one hand, obtain some Morita invariants of pomonoids using the results of po-$\Gamma$-semigroups and on the other hand, some recent results of Morita theory of pomonoids are used to obtain some results of po-$\Gamma$-semigroups.
Keywords: Morita equivalence for pomonoids, Po-$\Gamma$-semigroup.
Mots-clés : Morita invariant, Morita context
@article{ADM_2014_18_2_a5,
     author = {Sugato Gupta and Sujit Kumar Sardar},
     title = {Morita equivalence for partially ordered monoids and po-$\Gamma$-semigroups with unities},
     journal = {Algebra and discrete mathematics},
     pages = {234--249},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a5/}
}
TY  - JOUR
AU  - Sugato Gupta
AU  - Sujit Kumar Sardar
TI  - Morita equivalence for partially ordered monoids and po-$\Gamma$-semigroups with unities
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 234
EP  - 249
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a5/
LA  - en
ID  - ADM_2014_18_2_a5
ER  - 
%0 Journal Article
%A Sugato Gupta
%A Sujit Kumar Sardar
%T Morita equivalence for partially ordered monoids and po-$\Gamma$-semigroups with unities
%J Algebra and discrete mathematics
%D 2014
%P 234-249
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a5/
%G en
%F ADM_2014_18_2_a5
Sugato Gupta; Sujit Kumar Sardar. Morita equivalence for partially ordered monoids and po-$\Gamma$-semigroups with unities. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 234-249. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a5/

[1] N. C. Adhikari, “Primary and semiprimary $\Gamma$-semigroup”, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N. S.), 42:2 (1998), 273–280 | MR

[2] B. Banaschewski, “Functors into categories of M-sets”, Abh. Math. Sem. Univ. Hamburg, 38 (1972), 49–64 | DOI | MR | Zbl

[3] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, v. I, Math. Surveys, 7, Amer. Math. Soc., 1961 ; v. II, 1967 | MR | Zbl

[4] T. K. Dutta and N. C. Adhikari, “On $\Gamma$-semigroup with right and left unities”, Soochow Jr. of Math., 19:4 (1993), 461–474 | MR | Zbl

[5] T. K. Dutta and N. C. Adhikari, “On prime radical of $\Gamma$-semigroup”, Bull. Cal. Math. Soc., 86:5 (1994), 437–444 | MR | Zbl

[6] T. K. Dutta and N. C. Adhikari, “On Noetherian $\Gamma$-semigroup”, Kyunpook Math. Jr., 36:1 (1996), 89–95 | MR | Zbl

[7] T. K. Dutta and N. C. Adhikari, “On the radicals of $\Gamma$-semigroup”, Bull. Cal. Math. Soc., 88:3 (1996), 189–194 | MR | Zbl

[8] T. K. Dutta and N. C. Adhikari, “On partially ordered $\Gamma$-semigroup”, Southeast Asian Bull. Math., 28:6 (2004), 1021–1028 | MR | Zbl

[9] M. Kilp, U. Knauer and A. Mikhalev, Monoids, Acts and Categories, Walter de Gruyter, Berlin–New York, 2000 | MR | Zbl

[10] U. Knauer, “Projectivity of acts and Morita equivalence of monoids”, Semigroup Forum, 3 (1972), 359–370 | DOI | MR | Zbl

[11] V. Laan, “Generators in the categories of $S$-posets”, Cent. Eur. J. Math., 6 (2008), 357–363 | DOI | MR | Zbl

[12] V. Laan, “Morita theorems for partially ordered monoids”, Proceedings of the Estonian Academy of Sciences, 60:4 (2011), 221–237 | DOI | MR | Zbl

[13] B. Mitchell, Theory of categories, Academic press Inc., New York, 1965 | MR | Zbl

[14] N. K. Saha, “On $\Gamma$-semigroup II”, Bull. Cal. Math. Soc., 79 (1987), 331–335 | MR | Zbl

[15] N. K. Saha, “On $\Gamma$-semigroup III”, Bull. Cal. Math. Soc., 80 (1988), 1–12 | MR | Zbl

[16] S. K. Sardar, S. Gupta and K. P. Shum, “$\Gamma$-semigroups with unities and Morita equivalence for monoids”, European Journal of Pure and Applied Mathematics, 6:1 (2013), 1–10 | MR

[17] S. K. Sardar, P. Pal and R. Mukherjee, “Semilattice congruence and Fuzzy semilattice congruence on po-$\Gamma$-semigroup via its operator semigroup”, East-West J. of Mathematics, 13:2 (2011), 151–163 | MR

[18] M. K. Sen, “On $\Gamma$-semigroup”, Proceedings of International Conference on Algebra and it's Apllication, Decker Publication, New York, 1981, 301–308

[19] M. K. Sen and N. K. Saha, “On $\Gamma$-semigroup I”, Bull. Cal. Math. Soc., 78 (1986), 180–186 | MR | Zbl

[20] X. Shi, Z. Liu, F. Wang and S. Bulman-Fleming, “Indecomposable, projective and flat $S$-posets”, Communications in Algebra, 33 (2005), 235–251 | DOI | MR | Zbl

[21] T. Targla and V. Laan, “Congruences of strong Morita equivalent posemigroups”, Acta Math. Univ. Comenianae, LXXXI:2 (2012), 247–254 | MR | Zbl

[22] L. Tart, “Strong Morita equivalence for ordered semigroups with local units”, Periodica Mathematica Hungarica, 65:1 (2012), 29–43 | DOI | MR | Zbl

[23] L. Tart, “Morita invariants for partially ordered semigroups with local units”, Proceedings of the Estonian Academy of Sciences, 61:1 (2012), 38–47 | DOI | MR | Zbl