Lattices of partial sums
Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 171-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce and study a class of partially ordered sets that can be interpreted as partial sums of indeterminate real numbers. An important example of these partially ordered sets, is the classical Young lattice $\mathbb{Y}$ of the integer partitions. In this context, the sum function associated to a specific assignment of real values to the indeterminate variables becomes a valuation on a distributive lattice.
Keywords: distributive lattices, real partial sums
Mots-clés : integer partitions.
@article{ADM_2014_18_2_a2,
     author = {Giampiero Chiaselotti and Tommaso Gentile and Paolo Antonio Oliverio},
     title = {Lattices of partial sums},
     journal = {Algebra and discrete mathematics},
     pages = {171--185},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a2/}
}
TY  - JOUR
AU  - Giampiero Chiaselotti
AU  - Tommaso Gentile
AU  - Paolo Antonio Oliverio
TI  - Lattices of partial sums
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 171
EP  - 185
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a2/
LA  - en
ID  - ADM_2014_18_2_a2
ER  - 
%0 Journal Article
%A Giampiero Chiaselotti
%A Tommaso Gentile
%A Paolo Antonio Oliverio
%T Lattices of partial sums
%J Algebra and discrete mathematics
%D 2014
%P 171-185
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a2/
%G en
%F ADM_2014_18_2_a2
Giampiero Chiaselotti; Tommaso Gentile; Paolo Antonio Oliverio. Lattices of partial sums. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 171-185. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a2/

[1] K. Alladi, P. Erdös and J. D. Vaaler, “Multiplicative functions and small divisors”, Analytic Number Theory and Diophantine Problems, Progress in Mathematics, 70, Birkhäuser, Boston, MA, 1987, 1–13 | MR

[2] T. Bier and N. Manickam, “The first distribution invariant of the Johnson-scheme”, SEAMS Bull. Math., 11 (1987), 61–68 | MR | Zbl

[3] C. Bisi and G. Chiaselotti, “A class of lattices and boolean functions related to the Manickam-Miklös-Singhi Conjecture”, Adv. Geom., 13:1 (2013), 1–27 | DOI | MR | Zbl

[4] C. Bisi and G. Chiaselotti, Extension results for boolean maps and a class of systems of linear inequalities, 2010, 22 pp., arXiv: 1012.5486

[5] G. Chiaselotti, “On a problem concerning the weight functions”, European J. Combin., 23 (2002), 15–22 | DOI | MR | Zbl

[6] G. Chiaselotti, G. Infante, G. Marino, “New results related to a conjecture of Manickam and Singhi”, European J. Combin., 29:2 (2008), 361–368 | DOI | MR | Zbl

[7] G. Chiaselotti, G. Marino, C. Nardi, “A minimum problem for finite sets of real numbers with nonnegative sum”, J. Appl. Math., 2012 (2012), Article ID 847958, 15 pp. | DOI | MR | Zbl

[8] K. Engel and C. Nardi, “Solution of a problem on non-negative subset sums”, European J. Combin., 33 (2012), 1253–1256 | DOI | MR | Zbl

[9] P. Erdös, C. Ko and R. Rado, “Intersection theorems for systems of finite sets”, Quart. J. Math. Oxford Ser. (2), 12 (1961), 313–320 | DOI | MR | Zbl

[10] L. Geissinger, “Valuations on distributive lattices. I”, Arch. Mat., 24 (1973), 230–239 | DOI | MR | Zbl

[11] L. Geissinger, “Valuations on distributive lattices. II”, Arch. Mat., 24 (1973), 337–345 | DOI | MR | Zbl

[12] L. Geissinger, “Valuations on distributive lattices. III”, Arch. Mat., 24 (1973), 475–481 | DOI | MR | Zbl

[13] G. O. H. Katona, “A simple proof of the Erdös-Ko-Rado theorem”, J. Combinatorial Theory Ser. B, 13 (1972), 183–184 | DOI | MR | Zbl

[14] N. Manickam, First distribution invariants of association shemes, Ph. D. Thesis, The Ohio State University, 1986

[15] N. Manickam, “$W$-complement $d$-spreads, Singleton systems”, European J. Combin., 8:4 (1987), 437–439 | DOI | MR

[16] N. Manickam and D. Miklos, “On the number of non-negative partial sums of a non-negative sum”, Colloq. Math. Soc. Janos Bolyai, 52 (1987), 385–392 | MR

[17] N. Manickam, “Distribution Invariants of Association Schemes”, Congress Numerantum, 61 (1988), 121–131 | MR | Zbl

[18] N. Manickam, “First distributed sets in the association scheme of bilinear forms”, Colloq. Math. Soc. Janos Bolyai, 60 (1991), 465–468 | MR

[19] G. Marino and G. Chiaselotti, “A method to count the positive 3-subsets in a set of real numbers with non-negative sum”, European J. Combin., 23 (2002), 619–629 | DOI | MR | Zbl

[20] G. C. Rota, “On the combinatorics of the Euler characteristic”, Studies in Pure Math., Ac. Press, London, 1971, 221–233 | MR | Zbl

[21] S. Srinivasan, “On an Arithmetical Inequality II”, Contemporary Mathematics, 210, American Mathematical Society, Providence, RI, 1998, 299–301 | DOI | MR | Zbl

[22] R. P. Stanley, “Weyl groups, the hard Lefschetz theorem, and the Sperner property”, SIAM J. Alg. Disc. Meth., 1 (1980), 168–184 | DOI | MR | Zbl

[23] M. Tyomkyn, “An improved bound for the Manickam-Miklós-Singhi conjecture”, European J. Combin., 33:1 (2012), 27–32 | DOI | MR | Zbl