On one class of algebras
Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 306-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a $g$-dimonoid which is isomorphic to the free $g$-dimonoid is given and a free $n$-nilpotent $g$-dimonoid is constructed. We also present the least $n$-nilpotent congruence on a free $g$-dimonoid and give numerous examples of $g$-dimonoids.
Keywords: dimonoid, $g$-dimonoid, free $g$-dimonoid, free $n$-nilpotent $g$-dimonoid, semigroup, congruence.
@article{ADM_2014_18_2_a11,
     author = {Yuliia V. Zhuchok},
     title = {On one class of algebras},
     journal = {Algebra and discrete mathematics},
     pages = {306--320},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a11/}
}
TY  - JOUR
AU  - Yuliia V. Zhuchok
TI  - On one class of algebras
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 306
EP  - 320
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a11/
LA  - en
ID  - ADM_2014_18_2_a11
ER  - 
%0 Journal Article
%A Yuliia V. Zhuchok
%T On one class of algebras
%J Algebra and discrete mathematics
%D 2014
%P 306-320
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a11/
%G en
%F ADM_2014_18_2_a11
Yuliia V. Zhuchok. On one class of algebras. Algebra and discrete mathematics, Tome 18 (2014) no. 2, pp. 306-320. http://geodesic.mathdoc.fr/item/ADM_2014_18_2_a11/

[1] J.-L. Loday, “Dialgebras”, Dialgebras and related operads, Lect. Notes Math., 1763, Springer-Verlag, Berlin, 2001, 7–66 | DOI | MR | Zbl

[2] A. V. Zhuchok, “Dimonoids”, Algebra and Logic, 50:4 (2011), 323–340 | DOI | MR | Zbl

[3] A. V. Zhuchok, “Free dimonoids”, Ukr. Math. J., 63:2 (2011), 196–208 | DOI | MR | Zbl

[4] A. V. Zhuchok, “Free $n$-nilpotent dimonoids”, Algebra and Discrete Math., 16:2 (2013), 299–310 | MR | Zbl

[5] A. P. Pozhidaev, “0-dialgebras with bar-unity and nonassociative Rota-Baxter algebras”, Sib. Math. J., 50:6 (2009), 1070–1080 | DOI | MR | Zbl

[6] T. Pirashvili, “Sets with two associative operations”, Cent. Eur. J. Math., 2 (2003), 169–183 | DOI | MR | Zbl

[7] B. M. Schein, “Restrictive bisemigroups”, Izv. Vyssh. Uchebn. Zaved. Mat., 1:44 (1965), 168–179 (Russian) | MR | Zbl

[8] M. Gould, K. A. Linton, A. W. Nelson, “Interassociates of monogenic semigroups”, Semigroup Forum, 68 (2004), 186–201 | DOI | MR | Zbl

[9] M. Gould, R. E. Richardson, “Translational hulls of polynomially related semigroups”, Czechoslovak Math. J., 33:1 (1983), 95–100 | MR | Zbl

[10] E. Hewitt, H. S. Zuckerman, “Ternary operations and semigroups”, Semigroups, Proc. Sympos. (Detroit, Michigan 1968), 1969, 95–100 | MR

[11] B. Richter, Dialgebren, Doppelalgebren und ihre Homologie, Diplomarbeit, Universitat Bonn., 1997 http://www.math.uni-bonn.de/people/richter/ | Zbl

[12] N. A. Koreshkov, “$n$-tuple algebras of associative type”, Izv. Vyssh. Uchebn. Zaved. Mat., 12 (2008), 34–42 (Russian) | MR | Zbl

[13] Yul. V. Zhuchok, “On one class of algebras”, International Algebraic Conference dedicated to the 100th anniversary of L. A. Kaluzhnin: Abstracts Kyiv, Ukraine, 2014, 91 | MR

[14] Y. Movsisyan, S. Davidov and Mh. Safaryan, “Construction of free $g$-dimonoids”, Algebra and Discrete Math., 18:1 (2014), 138–148 | MR | Zbl