Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2014_18_1_a9, author = {Sergiy Kozerenko and Volodymyr Skochko}, title = {On graphs with graphic imbalance sequences}, journal = {Algebra and discrete mathematics}, pages = {97--108}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a9/} }
Sergiy Kozerenko; Volodymyr Skochko. On graphs with graphic imbalance sequences. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 97-108. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a9/
[1] H. Abdo, N. Cohen and D. Dimitrov, Bounds and computation of irregularity of a graph, Preprint, 2012, arXiv: 1207.4804
[2] M. O. Albertson, “The irregularity of a graph”, Ars Comb., 46 (1997), 219–225 | MR | Zbl
[3] F. K. Bell, “A note on the irregularity of graphs”, Lin. Algebra Appl., 161 (1992), 45–54 | DOI | MR | Zbl
[4] P. Erdos, T. Gallai, “Graphs with prescribed degrees of vertices”, Mat. Lapok, 11 (1960), 264–274
[5] F. Goldberg, A spectral bound for graph irregularity, Preprint, 2013, arXiv: 1308.3867
[6] P. Hansen, H. Melot, “Variable neighborhood search for extremal graphs 9. Bounding the irregularity of a graph”, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 69, 2005, 253–264 | MR | Zbl
[7] M. A. Henning, D. Rautenbach, “On the irregularity of bipartite graphs”, Discrete Math., 307 (2007), 1467–1472 | DOI | MR | Zbl
[8] M. Tavakoli, F. Rahbarnia, M. Mirzavaziri, A. R. Ashrafi and I. Gutman, “Extremely irregular graphs”, Kragujevac J. Mat., 37:1 (2013), 135–139 | MR | Zbl
[9] W. Luo, B. Zhou, “On irregularity of graphs”, Ars Comb., 88 (2008), 55–64 | MR | Zbl
[10] W. Luo, B. Zhou, “On the irregularity of trees and unicyclic graphs with given matching number”, Util. Math., 83 (2010), 141–147 | MR | Zbl