On graphs with graphic imbalance sequences
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 97-108

Voir la notice de l'article provenant de la source Math-Net.Ru

The imbalance of the edge $e=uv$ in a graph $G$ is the value $imb\,_{G}(e)=|d_{G}(u)-d_{G}(v)|$. We prove that the sequence $M_{G}$ of all edge imbalances in $G$ is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called complete extensions of paths, cycles and complete graphs. Also, we formulate two interesting conjectures related to graphicality of $M_{G}$.
Keywords: edge imbalance, graph irregularity, graphic sequence.
@article{ADM_2014_18_1_a9,
     author = {Sergiy Kozerenko and Volodymyr Skochko},
     title = {On graphs with graphic imbalance sequences},
     journal = {Algebra and discrete mathematics},
     pages = {97--108},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a9/}
}
TY  - JOUR
AU  - Sergiy Kozerenko
AU  - Volodymyr Skochko
TI  - On graphs with graphic imbalance sequences
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 97
EP  - 108
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a9/
LA  - en
ID  - ADM_2014_18_1_a9
ER  - 
%0 Journal Article
%A Sergiy Kozerenko
%A Volodymyr Skochko
%T On graphs with graphic imbalance sequences
%J Algebra and discrete mathematics
%D 2014
%P 97-108
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a9/
%G en
%F ADM_2014_18_1_a9
Sergiy Kozerenko; Volodymyr Skochko. On graphs with graphic imbalance sequences. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 97-108. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a9/