On weakly semisimple derivations of the polynomial ring in two variables
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 50-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb K$ be an algebraically closed field of characteristic zero and $\mathbb K[x,y]$ the polynomial ring. Every element $f\in \mathbb K[x,y]$ determines the Jacobian derivation $D_f$ of $\mathbb K[x,y]$ by the rule $D_f(h) = det J(f,h)$, where $J(f,h)$ is the Jacobian matrix of the polynomials $f$ and $h$. A polynomial $f$ is called weakly semisimple if there exists a polynomial $g$ such that $D_f(g) = \lambda g$ for some nonzero $\lambda\in \mathbb K$. Ten years ago, Y. Stein posed a problem of describing all weakly semisimple polynomials (such a description would characterize all two dimensional nonabelian subalgebras of the Lie algebra of all derivations of $\mathbb K[x,y]$ with zero divergence). We give such a description for polynomials $f$ with the separated variables, i.e. which are of the form: $f(x,y) = f_1(x) f_2(y)$ for some $f_{1}(t), f_{2}(t)\in \mathbb K[t]$.
Keywords: polynomial ring, irreducible polynomial, Jacobian derivation.
@article{ADM_2014_18_1_a6,
     author = {Volodimir Gavran and Vitaliy Stepukh},
     title = {On weakly semisimple derivations of the polynomial ring in two variables},
     journal = {Algebra and discrete mathematics},
     pages = {50--58},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a6/}
}
TY  - JOUR
AU  - Volodimir Gavran
AU  - Vitaliy Stepukh
TI  - On weakly semisimple derivations of the polynomial ring in two variables
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 50
EP  - 58
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a6/
LA  - en
ID  - ADM_2014_18_1_a6
ER  - 
%0 Journal Article
%A Volodimir Gavran
%A Vitaliy Stepukh
%T On weakly semisimple derivations of the polynomial ring in two variables
%J Algebra and discrete mathematics
%D 2014
%P 50-58
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a6/
%G en
%F ADM_2014_18_1_a6
Volodimir Gavran; Vitaliy Stepukh. On weakly semisimple derivations of the polynomial ring in two variables. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 50-58. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a6/

[1] Arnaud Bodin, “Reducibility of rational functions in several variables”, Israel J. Math., 164 (2008), 333–347 | DOI | MR | Zbl

[2] A. P. Petravchuk, O. G. Iena, “On centralizers of elements in the Lie algebra of the special Cremona group $sa(2, k)$”, Journal of Lie Theory, 16:3 (2006), 561–567 | MR | Zbl

[3] D. Lorenzini, “Reducibility of polynomials in two variables”, J. Algebra, 156 (1993), 65–75 | DOI | MR | Zbl

[4] A. Nowicki, M. Nagata, “Rings of constants for $k$-derivations in $k[x_1,\dots, x_n]$”, J. Math. Kyoto Univ., 28 (1988), 111–118 | MR | Zbl

[5] A. Nowicki, Polynomial derivations and their rings of constants, N. Copernicus University Press, Torun, 1994 | MR

[6] J. M. Ollagnier, “Algebraic closure of a rational function”, Qualitative theory of dynamical systems, 5 (2004), 285–300 | DOI | MR | Zbl

[7] Y. Stein, “Weakly nilpotent and weakly semisimple polynomials on the plane”, Int. Math. Research Notices, 13 (2000), 681–698 | DOI | MR | Zbl