On a factorization of an iterated wreath product of permutation groups
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 14-26
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that if each group of permutations $(G_i, M_i)$, $i\in\mathbb{N}$ has a factorization then their infinite iterated wreath product $\mathop{\wr}\limits_{i=1}^{\infty}\!\! G_i$ also has a factorization. We discuss some properties of this factorization and give examples.
Keywords:
iterated wreath product of permutation groups, factorization of groups, profinite groups.
@article{ADM_2014_18_1_a3,
author = {Beata Bajorska and Vitaliy Sushchansky},
title = {On a factorization of an iterated wreath product of permutation groups},
journal = {Algebra and discrete mathematics},
pages = {14--26},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a3/}
}
TY - JOUR AU - Beata Bajorska AU - Vitaliy Sushchansky TI - On a factorization of an iterated wreath product of permutation groups JO - Algebra and discrete mathematics PY - 2014 SP - 14 EP - 26 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a3/ LA - en ID - ADM_2014_18_1_a3 ER -
Beata Bajorska; Vitaliy Sushchansky. On a factorization of an iterated wreath product of permutation groups. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 14-26. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a3/