On a factorization of an iterated wreath product of permutation groups
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 14-26

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if each group of permutations $(G_i, M_i)$, $i\in\mathbb{N}$ has a factorization then their infinite iterated wreath product $\mathop{\wr}\limits_{i=1}^{\infty}\!\! G_i$ also has a factorization. We discuss some properties of this factorization and give examples.
Keywords: iterated wreath product of permutation groups, factorization of groups, profinite groups.
@article{ADM_2014_18_1_a3,
     author = {Beata Bajorska and Vitaliy Sushchansky},
     title = {On a factorization of an iterated wreath product of permutation groups},
     journal = {Algebra and discrete mathematics},
     pages = {14--26},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a3/}
}
TY  - JOUR
AU  - Beata Bajorska
AU  - Vitaliy Sushchansky
TI  - On a factorization of an iterated wreath product of permutation groups
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 14
EP  - 26
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a3/
LA  - en
ID  - ADM_2014_18_1_a3
ER  - 
%0 Journal Article
%A Beata Bajorska
%A Vitaliy Sushchansky
%T On a factorization of an iterated wreath product of permutation groups
%J Algebra and discrete mathematics
%D 2014
%P 14-26
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a3/
%G en
%F ADM_2014_18_1_a3
Beata Bajorska; Vitaliy Sushchansky. On a factorization of an iterated wreath product of permutation groups. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 14-26. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a3/