On a factorization of an iterated wreath product of permutation groups
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 14-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if each group of permutations $(G_i, M_i)$, $i\in\mathbb{N}$ has a factorization then their infinite iterated wreath product $\mathop{\wr}\limits_{i=1}^{\infty}\!\! G_i$ also has a factorization. We discuss some properties of this factorization and give examples.
Keywords: iterated wreath product of permutation groups, factorization of groups, profinite groups.
@article{ADM_2014_18_1_a3,
     author = {Beata Bajorska and Vitaliy Sushchansky},
     title = {On a factorization of an iterated wreath product of permutation groups},
     journal = {Algebra and discrete mathematics},
     pages = {14--26},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a3/}
}
TY  - JOUR
AU  - Beata Bajorska
AU  - Vitaliy Sushchansky
TI  - On a factorization of an iterated wreath product of permutation groups
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 14
EP  - 26
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a3/
LA  - en
ID  - ADM_2014_18_1_a3
ER  - 
%0 Journal Article
%A Beata Bajorska
%A Vitaliy Sushchansky
%T On a factorization of an iterated wreath product of permutation groups
%J Algebra and discrete mathematics
%D 2014
%P 14-26
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a3/
%G en
%F ADM_2014_18_1_a3
Beata Bajorska; Vitaliy Sushchansky. On a factorization of an iterated wreath product of permutation groups. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 14-26. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a3/

[1] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups, Expositions in Mathematics, 53, de Gruyter, Berlin, 2010 | DOI | MR | Zbl

[2] Proc. Steklov Inst. Math., 231:4 (2000), 128–203 | MR | Zbl

[3] P. Hall, “On the Sylow systems of a soluble group”, Proc. London Math. Soc., 43 (1937), 316–326 | MR

[4] L. Kaloujnine, “Über eine Verallgemeinerung der $p$-Sylow-gruppen symmetrischer Gruppen”, Acta Math. Acad. Sci. Hungar., 2 (1951), 197–221 (in Russian, German summary) | DOI | MR | Zbl

[5] M. Krasner, L. Kaloujnine, “Produit complet des groupes de permutations et problème d'extension de groupes. II”, Acta Sci. Math. Szeged, 14 (1951), 39–66 (in French) | MR | Zbl

[6] L. A. Kalužnin, V. I. Sushchanskiǐ, “Wreath products of abelian groups”, Trudy Moskov. Mat. Obshch., 29, 1973, 147–163 (in Russian) | MR | Zbl

[7] A. V. Rozhkov, “Subgroups of infinite finitely generated $p$-groups”, Mat. Sb. (N.S.), 129(171):3 (1986), 422–433 (in Russian) | MR | Zbl

[8] Math. USSR-Sb., 67:2 (1990), 535–553 | DOI | MR | Zbl | Zbl

[9] St. Petersburg Math. J., 6:1 (1995), 173–198 | MR

[10] J. Szép, “On the structure of groups which can be represented as the product of two subgroups”, Acta Sci. Math. Szeged, 12(A) (1950), 57–61 | MR | Zbl

[11] J. S. Wilson, Profinite groups, London Mathematical Society Monographs. New Series, 19, The Clarendon Press, Oxford University Press, New York, 1998 | MR | Zbl

[12] G. Zappa, “Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro”, Atti Secondo Congresso Un. Mat. Ital. (Bologna, 1940), Edizioni Cremonense, Rome, 1942, 119–125 (in Italian) | MR