Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2014_18_1_a11, author = {Yuri Movsisyan and Sergey Davidov and Mher Safaryan}, title = {Construction of free $\mathfrak{g}$-dimonoids}, journal = {Algebra and discrete mathematics}, pages = {138--148}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a11/} }
TY - JOUR AU - Yuri Movsisyan AU - Sergey Davidov AU - Mher Safaryan TI - Construction of free $\mathfrak{g}$-dimonoids JO - Algebra and discrete mathematics PY - 2014 SP - 138 EP - 148 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a11/ LA - en ID - ADM_2014_18_1_a11 ER -
Yuri Movsisyan; Sergey Davidov; Mher Safaryan. Construction of free $\mathfrak{g}$-dimonoids. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 138-148. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a11/
[1] J. L. Loday, “Dialgebras”, Dialgebras and related operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7–66 | DOI | MR | Zbl
[2] K. Liu, A class of some ring-like objects, submitted, arXiv: math.RA/0311396
[3] A. V. Zhuchok, “Dimonoids”, Algebra and Logic, 50:4 (2011), 323–340 | DOI | MR | Zbl
[4] A. V. Zhuchok, “Free dimonoids”, Ukrainian Mathematical Journal, 63:2 (2011), 196–208 | DOI | MR | Zbl
[5] A. V. Zhuchok, “Free commutative dimonoids”, Algebra and Discrete Mathematics, 9:1 (2010), 109–119 | MR
[6] T. Pirashvili, “Sets with two associative operations”, Central European Journal of Mathematics, 2 (2003), 169–183 | DOI | MR | Zbl
[7] Yu. M. Movsisyan, “Boolean bisemigroups. Bigroups and local bigroups”, Proceedings of the Conference, CSIT (September 19–23, Yerevan, Armenia), 2005, 97–104
[8] Yu. M. Movsisyan, “On the representations of De Morgan algebras”, Trends in logic III, Studialogica, Warsaw, 2005 http://www.ifispan.waw.pl/studialogica/Movsisyan.pdf
[9] J. A. Brzozowski, “A characterization of De Morgan algebras”, International Journal of Algebra and Computation, 11 (2001), 525–527 | DOI | MR | Zbl
[10] J. A. Brzozowski, “De Morgan bisemilattices”, Proceedings of the 30th IEEE International Symposium on Multiple-Valued Logic, ISMVL (May, 23–25), 2000, 173 | DOI | MR
[11] J. A. Brzozowski, Joint Mathematics Meetings, Special Session: The Many Lives of Lattice Theory (San Diego, CA, January 6–9), 2002
[12] Yu. M. Movsisyan, “Binary representations of algebras with at most two binary operations. A Cayley theorem for distributive lattices”, International Journal of Algebra and Computation, 19:1 (2009), 97–106 | DOI | MR | Zbl
[13] Yu. M. Movsisyan, V. A. Aslanyan, “Boole-De Morgan algebras and quasi-De Morgan functions”, Communications in Algebra, 42:11 (2014), 4757–4777 | DOI | MR | Zbl
[14] P. S. Kolesnikov, “Variety of dialgebras and conform algebras”, Sib. Mat. J., 49:2 (2008), 322–329 | DOI | MR
[15] S. Burris, H. P. Sankappanavar, A course in universal algebra, Springer, 1981 | MR | Zbl
[16] B. I. Plotkin, Universal algebra, algebraic logic, and databases, Kluwer Academic Publisher, 1994 | MR | Zbl