Construction of free $\mathfrak{g}$-dimonoids
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 138-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the concept of a $\mathfrak{g}$-dimonoid is introduced and the construction of a free $\mathfrak{g}$-dimonoid is described. (A $\mathfrak{g}$-dimonoid is a duplex satisfying two additional identities.)
Keywords: dimonoid, $\mathfrak{g}$-dimonoid, free algebra, canonical form.
@article{ADM_2014_18_1_a11,
     author = {Yuri Movsisyan and Sergey Davidov and Mher Safaryan},
     title = {Construction of free $\mathfrak{g}$-dimonoids},
     journal = {Algebra and discrete mathematics},
     pages = {138--148},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a11/}
}
TY  - JOUR
AU  - Yuri Movsisyan
AU  - Sergey Davidov
AU  - Mher Safaryan
TI  - Construction of free $\mathfrak{g}$-dimonoids
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 138
EP  - 148
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a11/
LA  - en
ID  - ADM_2014_18_1_a11
ER  - 
%0 Journal Article
%A Yuri Movsisyan
%A Sergey Davidov
%A Mher Safaryan
%T Construction of free $\mathfrak{g}$-dimonoids
%J Algebra and discrete mathematics
%D 2014
%P 138-148
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a11/
%G en
%F ADM_2014_18_1_a11
Yuri Movsisyan; Sergey Davidov; Mher Safaryan. Construction of free $\mathfrak{g}$-dimonoids. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 138-148. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a11/

[1] J. L. Loday, “Dialgebras”, Dialgebras and related operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7–66 | DOI | MR | Zbl

[2] K. Liu, A class of some ring-like objects, submitted, arXiv: math.RA/0311396

[3] A. V. Zhuchok, “Dimonoids”, Algebra and Logic, 50:4 (2011), 323–340 | DOI | MR | Zbl

[4] A. V. Zhuchok, “Free dimonoids”, Ukrainian Mathematical Journal, 63:2 (2011), 196–208 | DOI | MR | Zbl

[5] A. V. Zhuchok, “Free commutative dimonoids”, Algebra and Discrete Mathematics, 9:1 (2010), 109–119 | MR

[6] T. Pirashvili, “Sets with two associative operations”, Central European Journal of Mathematics, 2 (2003), 169–183 | DOI | MR | Zbl

[7] Yu. M. Movsisyan, “Boolean bisemigroups. Bigroups and local bigroups”, Proceedings of the Conference, CSIT (September 19–23, Yerevan, Armenia), 2005, 97–104

[8] Yu. M. Movsisyan, “On the representations of De Morgan algebras”, Trends in logic III, Studialogica, Warsaw, 2005 http://www.ifispan.waw.pl/studialogica/Movsisyan.pdf

[9] J. A. Brzozowski, “A characterization of De Morgan algebras”, International Journal of Algebra and Computation, 11 (2001), 525–527 | DOI | MR | Zbl

[10] J. A. Brzozowski, “De Morgan bisemilattices”, Proceedings of the 30th IEEE International Symposium on Multiple-Valued Logic, ISMVL (May, 23–25), 2000, 173 | DOI | MR

[11] J. A. Brzozowski, Joint Mathematics Meetings, Special Session: The Many Lives of Lattice Theory (San Diego, CA, January 6–9), 2002

[12] Yu. M. Movsisyan, “Binary representations of algebras with at most two binary operations. A Cayley theorem for distributive lattices”, International Journal of Algebra and Computation, 19:1 (2009), 97–106 | DOI | MR | Zbl

[13] Yu. M. Movsisyan, V. A. Aslanyan, “Boole-De Morgan algebras and quasi-De Morgan functions”, Communications in Algebra, 42:11 (2014), 4757–4777 | DOI | MR | Zbl

[14] P. S. Kolesnikov, “Variety of dialgebras and conform algebras”, Sib. Mat. J., 49:2 (2008), 322–329 | DOI | MR

[15] S. Burris, H. P. Sankappanavar, A course in universal algebra, Springer, 1981 | MR | Zbl

[16] B. I. Plotkin, Universal algebra, algebraic logic, and databases, Kluwer Academic Publisher, 1994 | MR | Zbl