Matrix approach to noncommutative stably free modules and Hermite rings
Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 109-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present a matrix-constructive proof of an Stafford's Theorem about stably free modules over noncommutative rings. Matrix characterizations of noncommutative Hermite and projective-free rings are exhibit. Quotients, products and localizations of Hermite and some other classes of rings close related to Hermite rings are also considered.
Keywords: noncommutative rings and modules, stably free modules, Hermite rings, matrix methods in homological algebra.
@article{ADM_2014_18_1_a10,
     author = {Oswaldo Lezama and Claudia Gallego},
     title = {Matrix approach to noncommutative stably free modules and {Hermite} rings},
     journal = {Algebra and discrete mathematics},
     pages = {109--137},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a10/}
}
TY  - JOUR
AU  - Oswaldo Lezama
AU  - Claudia Gallego
TI  - Matrix approach to noncommutative stably free modules and Hermite rings
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 109
EP  - 137
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a10/
LA  - en
ID  - ADM_2014_18_1_a10
ER  - 
%0 Journal Article
%A Oswaldo Lezama
%A Claudia Gallego
%T Matrix approach to noncommutative stably free modules and Hermite rings
%J Algebra and discrete mathematics
%D 2014
%P 109-137
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a10/
%G en
%F ADM_2014_18_1_a10
Oswaldo Lezama; Claudia Gallego. Matrix approach to noncommutative stably free modules and Hermite rings. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 109-137. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a10/

[1] S. A. Amitsur, “Remarks of principal ideal rings”, Osaka Math. Journ., 15 (1963), 59–69 | MR | Zbl

[2] H. Bass, Algebraic $K$-theory, Benjamin, 1968 | MR | Zbl

[3] A. Bell, Notes on Localizations in Noncommutative Noetherian Rings, Departamento de Álgebra y Fundamentos, Universidad de Granada, España, 1989

[4] H. Chen, Rings Related to Stable Range Conditions, Series in Algebra, 11, World Scientific, 2011 | MR

[5] F. Chyzak, A. Quadrat, and D. Robertz, “Effective algorithms for parametrizing linear control systems over Ore algebras”, Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319–376 | DOI | MR | Zbl

[6] T. Cluzeau and A. Quadrat, “Factoring and decomposing a class of linear functional systems”, Lin. Alg. And Its Appl., 428 (2008), 324–381 | DOI | MR | Zbl

[7] T. Cluzeau and A. Quadrat, “Serre's reduction of linear partial differential systems with holonomic adjoints”, J. of Symb. Comp., 47 (2012), 1192–1213 | DOI | MR | Zbl

[8] P. Cohn, Free Ideal Rings and Localizations in General Rings, Cambridge University Press, 2006 | MR

[9] K. Goodearl and R. Jr. Warfield, An Introduction to Noncommutative Noetherian Rings, ST, 61, London Mathematical Society, 2004 | MR | Zbl

[10] A. I. Hatalevych, “Right Bézout rings with waist is a right Hermite ring”, Ukr. Math. J., 62 (2010), 151–154 | DOI | MR

[11] I. Kaplansky, “Elementary divisors and modules”, Trans. Amer. Math. Soc., 66 (1949), 464–491 | DOI | MR | Zbl

[12] T. Y. Lam, Serre's Problem on Projective Modules, Springer Monographs in Mathematics, Springer, 2006 | DOI | MR

[13] J. Lambeck, Lectures on Rings and Modulea, Chelsea Publishing Company, 1986

[14] O. Lezama et. al., “Quillen-Suslin rings”, Extracta Mathematicae, 24 (2009), 55–97 | MR | Zbl

[15] O. Lezama, Matrix and Gröbner Methods in Homological Algebra over Commutative Polynomial Rings, Lambert Academic Publishing, 2011

[16] B. MacDonald, Linear Algebra over Commutative Rings, Marcel Dekker, 1984 | MR

[17] J. McConnell and J. Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics, AMS, 2001 | MR

[18] A. Quadrat and D. Robertz, “Computation of bases of free modules over the Weyl algebras”, J. Symb. Comp., 42 (2007), 1113–1141 | DOI | MR | Zbl

[19] A. Quadrat, “Internal stabilization of coherent control systems”, IFAC, 2001

[20] A. Quadrat, “Stabilizing” the stabilizing controllers, preprint

[21] O. M. Romaniv, “Elementary reduction of matrices over right $2$-Euclidean rings”, Ukr. Math. J., 56 (2004), 2028–2034 | DOI | MR | Zbl

[22] J. T. Stafford, “Module structure of Weyl algebras”, J. London Math. Soc., 18 (1978), 429–442 | DOI | MR | Zbl

[23] A. Steger, “Diagonability of idempotent matrices”, Pac. J. Math., 19 (1966), 535–542 | DOI | MR | Zbl

[24] C. A. Weibel, Algebraic K-theory, preprint, 2012

[25] B. Zabavsky, “Diagonalizability theorems for matrices over rings with finite stable range”, Algebra and Discrete Mathematics, 2005, no. 1, 151–165 | MR | Zbl

[26] B. Zabavsky, “Reduction of matrices with stable range not exceeding 2”, Ukr. Math. Zh., 55 (2003), 550–554 | MR | Zbl