Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2014_18_1_a10, author = {Oswaldo Lezama and Claudia Gallego}, title = {Matrix approach to noncommutative stably free modules and {Hermite} rings}, journal = {Algebra and discrete mathematics}, pages = {109--137}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a10/} }
TY - JOUR AU - Oswaldo Lezama AU - Claudia Gallego TI - Matrix approach to noncommutative stably free modules and Hermite rings JO - Algebra and discrete mathematics PY - 2014 SP - 109 EP - 137 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a10/ LA - en ID - ADM_2014_18_1_a10 ER -
Oswaldo Lezama; Claudia Gallego. Matrix approach to noncommutative stably free modules and Hermite rings. Algebra and discrete mathematics, Tome 18 (2014) no. 1, pp. 109-137. http://geodesic.mathdoc.fr/item/ADM_2014_18_1_a10/
[1] S. A. Amitsur, “Remarks of principal ideal rings”, Osaka Math. Journ., 15 (1963), 59–69 | MR | Zbl
[2] H. Bass, Algebraic $K$-theory, Benjamin, 1968 | MR | Zbl
[3] A. Bell, Notes on Localizations in Noncommutative Noetherian Rings, Departamento de Álgebra y Fundamentos, Universidad de Granada, España, 1989
[4] H. Chen, Rings Related to Stable Range Conditions, Series in Algebra, 11, World Scientific, 2011 | MR
[5] F. Chyzak, A. Quadrat, and D. Robertz, “Effective algorithms for parametrizing linear control systems over Ore algebras”, Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319–376 | DOI | MR | Zbl
[6] T. Cluzeau and A. Quadrat, “Factoring and decomposing a class of linear functional systems”, Lin. Alg. And Its Appl., 428 (2008), 324–381 | DOI | MR | Zbl
[7] T. Cluzeau and A. Quadrat, “Serre's reduction of linear partial differential systems with holonomic adjoints”, J. of Symb. Comp., 47 (2012), 1192–1213 | DOI | MR | Zbl
[8] P. Cohn, Free Ideal Rings and Localizations in General Rings, Cambridge University Press, 2006 | MR
[9] K. Goodearl and R. Jr. Warfield, An Introduction to Noncommutative Noetherian Rings, ST, 61, London Mathematical Society, 2004 | MR | Zbl
[10] A. I. Hatalevych, “Right Bézout rings with waist is a right Hermite ring”, Ukr. Math. J., 62 (2010), 151–154 | DOI | MR
[11] I. Kaplansky, “Elementary divisors and modules”, Trans. Amer. Math. Soc., 66 (1949), 464–491 | DOI | MR | Zbl
[12] T. Y. Lam, Serre's Problem on Projective Modules, Springer Monographs in Mathematics, Springer, 2006 | DOI | MR
[13] J. Lambeck, Lectures on Rings and Modulea, Chelsea Publishing Company, 1986
[14] O. Lezama et. al., “Quillen-Suslin rings”, Extracta Mathematicae, 24 (2009), 55–97 | MR | Zbl
[15] O. Lezama, Matrix and Gröbner Methods in Homological Algebra over Commutative Polynomial Rings, Lambert Academic Publishing, 2011
[16] B. MacDonald, Linear Algebra over Commutative Rings, Marcel Dekker, 1984 | MR
[17] J. McConnell and J. Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics, AMS, 2001 | MR
[18] A. Quadrat and D. Robertz, “Computation of bases of free modules over the Weyl algebras”, J. Symb. Comp., 42 (2007), 1113–1141 | DOI | MR | Zbl
[19] A. Quadrat, “Internal stabilization of coherent control systems”, IFAC, 2001
[20] A. Quadrat, “Stabilizing” the stabilizing controllers, preprint
[21] O. M. Romaniv, “Elementary reduction of matrices over right $2$-Euclidean rings”, Ukr. Math. J., 56 (2004), 2028–2034 | DOI | MR | Zbl
[22] J. T. Stafford, “Module structure of Weyl algebras”, J. London Math. Soc., 18 (1978), 429–442 | DOI | MR | Zbl
[23] A. Steger, “Diagonability of idempotent matrices”, Pac. J. Math., 19 (1966), 535–542 | DOI | MR | Zbl
[24] C. A. Weibel, Algebraic K-theory, preprint, 2012
[25] B. Zabavsky, “Diagonalizability theorems for matrices over rings with finite stable range”, Algebra and Discrete Mathematics, 2005, no. 1, 151–165 | MR | Zbl
[26] B. Zabavsky, “Reduction of matrices with stable range not exceeding 2”, Ukr. Math. Zh., 55 (2003), 550–554 | MR | Zbl