On monoids of monotone injective partial selfmaps of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ with co-finite domains and images
Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 256-279

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the semigroup $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ of monotone injective partial selfmaps of the set of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ having co-finite domain and image, where $L_n\times_{\operatorname{lex}}\mathbb{Z}$ is the lexicographic product of $n$-elements chain and the set of integers with the usual order. We show that $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ is bisimple and establish its projective congruences. We prove that $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ is finitely generated, and for $n=1$ every automorphism of $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ is inner and show that in the case $n\geqslant 2$ the semigroup $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ has non-inner automorphisms. Also we show that every Baire topology $\tau$ on $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ such that $(\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}}),\tau)$ is a Hausdorff semitopological semigroup is discrete, construct a non-discrete Hausdorff semigroup inverse topology on $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$, and prove that the discrete semigroup $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ cannot be embedded into some classes of compact-like topological semigroups and that its remainder under the closure in a topological semigroup $S$ is an ideal in $S$.
Keywords: topological semigroup, semitopological semigroup, semigroup of bijective partial transformations, symmetric inverse semigroup, congruence, ideal, semigroup topologization, embedding.
Mots-clés : automorphism, homomorphism, Baire space
@article{ADM_2014_17_2_a6,
     author = {Oleg Gutik and Inna Pozdnyakova},
     title = {On monoids of monotone injective partial selfmaps of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ with co-finite domains and images},
     journal = {Algebra and discrete mathematics},
     pages = {256--279},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a6/}
}
TY  - JOUR
AU  - Oleg Gutik
AU  - Inna Pozdnyakova
TI  - On monoids of monotone injective partial selfmaps of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ with co-finite domains and images
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 256
EP  - 279
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a6/
LA  - en
ID  - ADM_2014_17_2_a6
ER  - 
%0 Journal Article
%A Oleg Gutik
%A Inna Pozdnyakova
%T On monoids of monotone injective partial selfmaps of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ with co-finite domains and images
%J Algebra and discrete mathematics
%D 2014
%P 256-279
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a6/
%G en
%F ADM_2014_17_2_a6
Oleg Gutik; Inna Pozdnyakova. On monoids of monotone injective partial selfmaps of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ with co-finite domains and images. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 256-279. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a6/