Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2014_17_2_a5, author = {Ievgen Bondarenko}, title = {The word problem in {Hanoi} {Towers} groups}, journal = {Algebra and discrete mathematics}, pages = {248--255}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a5/} }
Ievgen Bondarenko. The word problem in Hanoi Towers groups. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 248-255. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a5/
[1] I. Bondarenko, “Growth of Schreier graphs of automaton groups”, Mathematische Annalen, 354:2 (2012), 765–785 | DOI | MR | Zbl
[2] R. I. Grigorchuk, V. V. Nekrashevych, V. I. Sushchansky, “Automata, dynamical systems and groups”, Proceedings of the Steklov Institute of Mathematics, 231, 2000, 128–203 | MR | Zbl
[3] R. I. Grigorchuk, Z. Šuniḱ, “Asymptotic aspects of Schreier graphs and Hanoi Towers groups”, C. R. Math. Acad. Sci. Paris, 342:8 (2006), 545–550 | DOI | MR | Zbl
[4] R. I. Grigorchuk, Z. Šuniḱ, “Self-similarity and branching in group theory”, London Mathematical Society Lecture Note Series, 339, 2007, 36–95 | MR | Zbl
[5] A. M. Hinz, “The Tower of Hanoi”, Enseign. Math. (2), 35:3–4 (1989), 289–321 | MR | Zbl
[6] S. Klavzar, U. Milutinovic, C. Petr, “On the Frame-Stewart algorithm for the multi-peg Tower of Hanoi problem”, Discrete Appl. Math., 120:1–3 (2002), 141–157 | DOI | MR | Zbl
[7] Y. Muntyan, D. Savchuk, AutomGrp — GAP package for computations in self-similar groups and semigroups, Version 1.1.2, 2008
[8] V. Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, 117, AMS, Providence, RI, 2005 | DOI | MR | Zbl
[9] M. Szegedy, “In how many steps the k peg version of the Towers of Hanoi game can be solved?”, STACS 99 (Trier), Lecture Notes in Comput. Sci., 1563, Springer, Berlin, 1999, 356–361 | DOI | MR