Dense subgroups in the group of interval exchange transformations
Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 232-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns the characterization of the group $\mathop{IET}$ of interval exchange transformations (iet). We investigate a class of rational subgroups of $\mathop{IET}$. These are subgroups consisting of iet transformations defined by partitions with rational endpoints. We propose a characterization of rational subgroups in terms of infinite supernatural numbers and prove that every such subgroup is dense in $\mathop{IET}$. We also discuss the properties of these groups.
Keywords: rational subgroups, dense subgroups, supernatural numbers.
Mots-clés : Interval exchange transformations
@article{ADM_2014_17_2_a4,
     author = {Agnieszka Bier and Vitaliy Sushchansky},
     title = {Dense subgroups in the group of interval exchange transformations},
     journal = {Algebra and discrete mathematics},
     pages = {232--247},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a4/}
}
TY  - JOUR
AU  - Agnieszka Bier
AU  - Vitaliy Sushchansky
TI  - Dense subgroups in the group of interval exchange transformations
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 232
EP  - 247
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a4/
LA  - en
ID  - ADM_2014_17_2_a4
ER  - 
%0 Journal Article
%A Agnieszka Bier
%A Vitaliy Sushchansky
%T Dense subgroups in the group of interval exchange transformations
%J Algebra and discrete mathematics
%D 2014
%P 232-247
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a4/
%G en
%F ADM_2014_17_2_a4
Agnieszka Bier; Vitaliy Sushchansky. Dense subgroups in the group of interval exchange transformations. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 232-247. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a4/

[1] J. Athreya, M. Boshernitzan, “Ergodic properties of compositions of interval exchange maps and rotations”, Nonlinearity, 26 (2013), 417–421 | DOI | MR

[2] A. Avila, G. Forni, “Weak mixing for interval exchange transformations and translation flows”, Ann. of Math. (to appear)

[3] A. Avila, S. Gouezel, J.-C. Yoccoz, The Teichmuller flow is exponentially mixing, preprint

[4] A. Avila, M. Viana, Symplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture, preprint, 2005 www.preprint.impa.br | MR

[5] A. Avila, M. Viana, “Dynamics in the moduli space of Abelian differentials”, Port. Math. (N.S.), 62 (2005), 531–547 | MR | Zbl

[6] R. Beaumont, H. Zuckerman, “Characterization of the subgroups of the additive rationals”, Pacific J. Math, 1 (1951), 169–177 | DOI | MR | Zbl

[7] M. Boshernitzan, “A condition for minimal interval exchange transformations to be uniquely ergodic”, Duke J. of Math., 52:3 (1985), 723–752 | DOI | MR | Zbl

[8] M. Boshernitzan, Subgroup of interval exchanges generated by torsion elements and rotations, arXiv: 1208.1023 [math.DS]

[9] F. Dahmani, K. Fujiwara, V. Giurardel, “Free groups of interval exchange transformations are rare”, Groups, Geometry, and Dynamics, 7:4 (2013), 883–910 | DOI | MR | Zbl

[10] G. Forni, “Deviation of ergodic averages for area-preserving flows on surfaces of higher genus”, Ann. of Math., 155 (2002), 1–103 | DOI | MR | Zbl

[11] E. Goryachko, “The $K_0$-functor and characters of the group of rational rearrangements of the segment”, (English. Russian original), J. Math. Sci., 158:6 (2009), 838–844 | DOI | MR | Zbl

[12] E. Goryachko, F. Petrov, “Irreducible characters of the group of rational interval exchange transformations”, Zap. Nau. Seminars POMI, 378 (2010), 17–31 | MR

[13] A. Katok, “Interval exchange transformations and some special flows are not mixing”, Israel J. Math., 35:4 (1980), 301–310 | DOI | MR | Zbl

[14] M. Keane, “Interval exchange transformations”, Math. Z., 141 (1975), 25–31 | DOI | MR | Zbl

[15] M. Keane, “Non-ergodic interval exchange transformations”, Israel J. Math., 26 (1977), 188–196 | DOI | MR | Zbl

[16] H. Keynes, D. Newton, “A minimal, non-uniquely ergodic interval exchange transformation”, Math. Z., 148 (1976), 101–105 | DOI | MR | Zbl

[17] N. Kroshko, V. Sushchanskyy, “Direct limits of symmetric and alternating groups with strictly diagonal embeddings”, Arch. Math., 71 (1998), 173–182 | DOI | MR | Zbl

[18] H. Masur, “Interval exchange transformations and measured foliations”, Annals of Mathematics, 115 (1982), 169–200 | DOI | MR | Zbl

[19] C. Novak, “Discontinuity growth of interval exchange maps”, J. Mod. Dyn., 3 (2009), 379–405 | DOI | MR | Zbl

[20] C. Novak, “Continuous Interval Exchange Actions”, Algebraic and Geometric Topology, 10 (2010), 1609–1625 | DOI | MR | Zbl

[21] C. Novak, Interval exchanges that do not embedd in free groups, arXiv: 1007.3940v1 [math.DS]

[22] G. Rauzy, “Echanges d'intervalles et transformations induites”, Acta Arith., 34 (1979), 315–328 | MR | Zbl

[23] W. A. Veech, “Interval exchange transformations”, J. Analyse Math., 33 (1978), 222–272 | DOI | MR | Zbl

[24] W. A. Veech, “Strict ergidicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2”, Trans. Amer. Math. Soc., 140 (1969), 1–33 | MR | Zbl

[25] W. A. Veech, “Gauss measures for transformations on the space of interval exchange maps”, Annals of Mathematics, 115 (1982), 201–242 | DOI | MR | Zbl

[26] W. A. Veech, “The metric theory of interval exchange transformations III. The Sah-Arnoux-Fathi invariant”, Amer. J. Math., 106:6 (1984), 1389–1422 | DOI | MR | Zbl

[27] M. Viana, “Ergodic theory of interval exchange maps”, Rev. Mat. Complut., 19:1 (2006), 7–100 | DOI | MR | Zbl

[28] Y. Vorobets, Notes on the commutator group of the group of interval exchange transformations, arXiv: 1109.1352v1 [math.GR] | MR