On the condensation property of the Lamplighter groups and groups of intermediate growth
Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 222-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this short note is to revisit some old results about groups of intermediate growth and groups of the lamplighter type and to show that the Lamplighter group $L = \mathbb{Z}_2 \wr \mathbb{Z}$ is a condensation group and has a minimal presentation by generators and relators. The condensation property is achieved by showing that $L$ belongs to a Cantor subset of the space $\mathcal{M}_2$ of marked $2$-generated groups consisting mostly of groups of intermediate growth.
Keywords: Lamplighter groups; groups of intermediate growth; space of marked groups; condensation groups.
@article{ADM_2014_17_2_a3,
     author = {Mustafa G\"okhan Benli and Rostislav Grigorchuk},
     title = {On the condensation property of the {Lamplighter} groups and groups of intermediate growth},
     journal = {Algebra and discrete mathematics},
     pages = {222--231},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a3/}
}
TY  - JOUR
AU  - Mustafa Gökhan Benli
AU  - Rostislav Grigorchuk
TI  - On the condensation property of the Lamplighter groups and groups of intermediate growth
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 222
EP  - 231
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a3/
LA  - en
ID  - ADM_2014_17_2_a3
ER  - 
%0 Journal Article
%A Mustafa Gökhan Benli
%A Rostislav Grigorchuk
%T On the condensation property of the Lamplighter groups and groups of intermediate growth
%J Algebra and discrete mathematics
%D 2014
%P 222-231
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a3/
%G en
%F ADM_2014_17_2_a3
Mustafa Gökhan Benli; Rostislav Grigorchuk. On the condensation property of the Lamplighter groups and groups of intermediate growth. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 222-231. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a3/

[Bau61] Gilbert Baumslag, “Wreath products and finitely presented groups”, Math. Z., 75:22–28 (1960/1961) | MR | Zbl

[BCGS14] Robert Bieri, Yves Cornulier, Luc Guyot, and Ralph Strebel, “Infinite presentability of groups and condensation”, Journal of the Institute of Mathematics of Jussieu, 13:4 (2014), 811–848 | DOI | MR | Zbl

[Cha00] Christophe Champetier, “L'espace des groupes de type fini”, Topology, 39:4 (2000), 657–680 | DOI | MR | Zbl

[Cor11] Yves Cornulier, “On the {C}antor-{B}endixson rank of metabelian groups”, Ann. Inst. Fourier (Grenoble), 61:2 (2011), 593–618 | DOI | MR | Zbl

[dCGP07] Yves de Cornulier, Luc Guyot, and Wolfgang Pitsch, “On the isolated points in the space of groups”, J. Algebra, 307:1 (2007), 254–277 | DOI | MR | Zbl

[GK12] Rostislav Grigorchuk and Rostyslav Kravchenko, On the lattice of subgroups of the lamplighter group, 2012, arXiv: http://http://arxiv.org/abs/1203.5800 | MR

[Gri84] R. I. Grigorchuk, “Degrees of growth of finitely generated groups and the theory of invariant means”, Izv. Akad. Nauk SSSR Ser. Mat., 48:5 (1984), 939–985 | MR

[Gri85] R. I. Grigorchuk, “Degrees of growth of {$p$}-groups and torsion-free groups”, Mat. Sb. (N.S.), 126(168):2 (1985), 194–214 | MR | Zbl

[Gri05] Rostislav Grigorchuk, “Solved and unsolved problems around one group”, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., 248, Birkhäuser, Basel, 2005, 117–218 | DOI | MR | Zbl

[G{\.Z}01] Rostislav I. Grigorchuk and Andrzej Żuk, “The lamplighter group as a group generated by a 2-state automaton, and its spectrum”, Geom. Dedicata, 87:1-3 (2001), 209–244 | MR | Zbl

[Kec95] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995 | MR | Zbl

[Nek07] Volodymyr Nekrashevych, “A minimal Cantor set in the space of 3-generated groups”, Geom. Dedicata, 124 (2007), 153–190 | DOI | MR | Zbl

[{Neu}37] B. H. Neumann, “Some remarks on infinite groups”, J. Lond. Math. Soc., 12 (1937), 120–127