On the condensation property of the Lamplighter groups and groups of intermediate growth
Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 222-231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this short note is to revisit some old results about groups of intermediate growth and groups of the lamplighter type and to show that the Lamplighter group $L = \mathbb{Z}_2 \wr \mathbb{Z}$ is a condensation group and has a minimal presentation by generators and relators. The condensation property is achieved by showing that $L$ belongs to a Cantor subset of the space $\mathcal{M}_2$ of marked $2$-generated groups consisting mostly of groups of intermediate growth.
Keywords: Lamplighter groups; groups of intermediate growth; space of marked groups; condensation groups.
@article{ADM_2014_17_2_a3,
     author = {Mustafa G\"okhan Benli and Rostislav Grigorchuk},
     title = {On the condensation property of the {Lamplighter} groups and groups of intermediate growth},
     journal = {Algebra and discrete mathematics},
     pages = {222--231},
     year = {2014},
     volume = {17},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a3/}
}
TY  - JOUR
AU  - Mustafa Gökhan Benli
AU  - Rostislav Grigorchuk
TI  - On the condensation property of the Lamplighter groups and groups of intermediate growth
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 222
EP  - 231
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a3/
LA  - en
ID  - ADM_2014_17_2_a3
ER  - 
%0 Journal Article
%A Mustafa Gökhan Benli
%A Rostislav Grigorchuk
%T On the condensation property of the Lamplighter groups and groups of intermediate growth
%J Algebra and discrete mathematics
%D 2014
%P 222-231
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a3/
%G en
%F ADM_2014_17_2_a3
Mustafa Gökhan Benli; Rostislav Grigorchuk. On the condensation property of the Lamplighter groups and groups of intermediate growth. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 222-231. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a3/

[Bau61] Gilbert Baumslag, “Wreath products and finitely presented groups”, Math. Z., 75:22–28 (1960/1961) | MR | Zbl

[BCGS14] Robert Bieri, Yves Cornulier, Luc Guyot, and Ralph Strebel, “Infinite presentability of groups and condensation”, Journal of the Institute of Mathematics of Jussieu, 13:4 (2014), 811–848 | DOI | MR | Zbl

[Cha00] Christophe Champetier, “L'espace des groupes de type fini”, Topology, 39:4 (2000), 657–680 | DOI | MR | Zbl

[Cor11] Yves Cornulier, “On the {C}antor-{B}endixson rank of metabelian groups”, Ann. Inst. Fourier (Grenoble), 61:2 (2011), 593–618 | DOI | MR | Zbl

[dCGP07] Yves de Cornulier, Luc Guyot, and Wolfgang Pitsch, “On the isolated points in the space of groups”, J. Algebra, 307:1 (2007), 254–277 | DOI | MR | Zbl

[GK12] Rostislav Grigorchuk and Rostyslav Kravchenko, On the lattice of subgroups of the lamplighter group, 2012, arXiv: http://http://arxiv.org/abs/1203.5800 | MR

[Gri84] R. I. Grigorchuk, “Degrees of growth of finitely generated groups and the theory of invariant means”, Izv. Akad. Nauk SSSR Ser. Mat., 48:5 (1984), 939–985 | MR

[Gri85] R. I. Grigorchuk, “Degrees of growth of {$p$}-groups and torsion-free groups”, Mat. Sb. (N.S.), 126(168):2 (1985), 194–214 | MR | Zbl

[Gri05] Rostislav Grigorchuk, “Solved and unsolved problems around one group”, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., 248, Birkhäuser, Basel, 2005, 117–218 | DOI | MR | Zbl

[G{\.Z}01] Rostislav I. Grigorchuk and Andrzej Żuk, “The lamplighter group as a group generated by a 2-state automaton, and its spectrum”, Geom. Dedicata, 87:1-3 (2001), 209–244 | MR | Zbl

[Kec95] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995 | MR | Zbl

[Nek07] Volodymyr Nekrashevych, “A minimal Cantor set in the space of 3-generated groups”, Geom. Dedicata, 124 (2007), 153–190 | DOI | MR | Zbl

[{Neu}37] B. H. Neumann, “Some remarks on infinite groups”, J. Lond. Math. Soc., 12 (1937), 120–127