Densities, submeasures and partitions of groups
Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 193-221

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition $G=A_1\cup\dots\cup A_n$ of a group $G$ there is a cell $A_i$ of the partition such that $G=FA_iA_i^{-1}$ for some set $F\subset G$ of cardinality $|F|\le n$? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition $G=A_1\cup\dots\cup A_n$ of a group $G$ there are cells $A_i$, $A_j$ of the partition such that $G=FA_jA_j^{-1}$ for some finite set $F\subset G$ of cardinality $|F|\le \max_{0$; $G=F\cdot\bigcup_{x\in E}xA_iA_i^{-1}x^{-1}$ for some finite sets $F,E\subset G$ with $|F|\le n$; $G=FA_iA_i^{-1}A_i$ for some finite set $F\subset G$ of cardinality $|F|\le n$; the set $(A_iA_i^{-1})^{4^{n-1}}$ is a subgroup of index $\le n$ in $G$. The last three statements are derived from the corresponding density results.
Keywords: partition of a group; density; submeasure; amenable group.
@article{ADM_2014_17_2_a2,
     author = {Taras Banakh and Igor Protasov and Sergiy Slobodianiuk},
     title = {Densities, submeasures and partitions of groups},
     journal = {Algebra and discrete mathematics},
     pages = {193--221},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a2/}
}
TY  - JOUR
AU  - Taras Banakh
AU  - Igor Protasov
AU  - Sergiy Slobodianiuk
TI  - Densities, submeasures and partitions of groups
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 193
EP  - 221
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a2/
LA  - en
ID  - ADM_2014_17_2_a2
ER  - 
%0 Journal Article
%A Taras Banakh
%A Igor Protasov
%A Sergiy Slobodianiuk
%T Densities, submeasures and partitions of groups
%J Algebra and discrete mathematics
%D 2014
%P 193-221
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a2/
%G en
%F ADM_2014_17_2_a2
Taras Banakh; Igor Protasov; Sergiy Slobodianiuk. Densities, submeasures and partitions of groups. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 193-221. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a2/