Densities, submeasures and partitions of groups
Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 193-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition $G=A_1\cup\dots\cup A_n$ of a group $G$ there is a cell $A_i$ of the partition such that $G=FA_iA_i^{-1}$ for some set $F\subset G$ of cardinality $|F|\le n$? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition $G=A_1\cup\dots\cup A_n$ of a group $G$ there are cells $A_i$, $A_j$ of the partition such that $G=FA_jA_j^{-1}$ for some finite set $F\subset G$ of cardinality $|F|\le \max_{0$; $G=F\cdot\bigcup_{x\in E}xA_iA_i^{-1}x^{-1}$ for some finite sets $F,E\subset G$ with $|F|\le n$; $G=FA_iA_i^{-1}A_i$ for some finite set $F\subset G$ of cardinality $|F|\le n$; the set $(A_iA_i^{-1})^{4^{n-1}}$ is a subgroup of index $\le n$ in $G$. The last three statements are derived from the corresponding density results.
Keywords: partition of a group; density; submeasure; amenable group.
@article{ADM_2014_17_2_a2,
     author = {Taras Banakh and Igor Protasov and Sergiy Slobodianiuk},
     title = {Densities, submeasures and partitions of groups},
     journal = {Algebra and discrete mathematics},
     pages = {193--221},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a2/}
}
TY  - JOUR
AU  - Taras Banakh
AU  - Igor Protasov
AU  - Sergiy Slobodianiuk
TI  - Densities, submeasures and partitions of groups
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 193
EP  - 221
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a2/
LA  - en
ID  - ADM_2014_17_2_a2
ER  - 
%0 Journal Article
%A Taras Banakh
%A Igor Protasov
%A Sergiy Slobodianiuk
%T Densities, submeasures and partitions of groups
%J Algebra and discrete mathematics
%D 2014
%P 193-221
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a2/
%G en
%F ADM_2014_17_2_a2
Taras Banakh; Igor Protasov; Sergiy Slobodianiuk. Densities, submeasures and partitions of groups. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 193-221. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a2/

[1] T. Banakh, Extremal densities and submeasures on groups, preprint, arXiv: http://arxiv.org/abs/1211.0717

[2] T. Banakh, Extremal densities and measures on groups and $G$-spaces and their combinatorial applications, Lecture Notes, arXiv: http://arxiv.org/abs/1312.5078

[3] T. Banakh, M. Fra̧czyk, On the structure of the difference sets in partitions of $G$-spaces and groups, preprint, arXiv: http://arxiv.org/abs/1405.2151

[4] T. Banakh, N. Lyaskovska, D. Repovs, “Packing index of subsets in Polish groups”, Notre Dame J. Formal Logic., 50:4 (2009), 453–468 | DOI | MR | Zbl

[5] T. Banakh, N. Lyaskovska, “Completeness of translation-invariant ideals in groups”, Ukr. Mat. Zh., 62:8 (2010), 1022–1031 | MR | Zbl

[6] T. Banakh, N. Lyaskovska, “Constructing universally small subsets of a given packing index in Polish groups”, Colloq. Math., 125 (2011), 213–220 | DOI | MR | Zbl

[7] T. Banakh, I. V. Protasov, S. Slobodianiuk, “Syndetic submeasures and partitions of $G$-spaces and groups”, Internat. J. Algebra Comput., 23:7 (2013), 1611–1623 | DOI | MR | Zbl

[8] T. Banakh, O. Ravsky, S. Slobodianiuk, On partitions of $G$-spaces and $G$-lattices, preprint, arXiv: http://arxiv.org/abs/1303.1427

[9] V. Bergelson, N. Hindman, R. McCutcheon, “Notions of size and combinatorial properties of quotient sets in semigroups”, Topology Proc., 23 (1998), 23–60 | MR | Zbl

[10] J. Erde, A Note on Combinatorial Derivation, preprint, arXiv: http://arxiv.org/abs/1210.7622

[11] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification, de Gruyter, Berlin–New York, 1998 | MR | Zbl

[12] N. Hindman, D. Strauss, “Density in arbitrary semigroups”, Semigroup Forum, 73:2 (2006), 273–300 | DOI | MR | Zbl

[13] R. M. Corless, G. H. Gonnet, D. E.G. Hare, D. J. Jeffrey, D. E. Knuth, “On the Lambert $W$ function”, Adv. Comput. Math., 5:4 (1996), 329–359 | DOI | MR | Zbl

[14] Unsolved problems in group theory: the Kourovka notebook, Thirteenth augmented edition, eds. V. D. Mazurov, E. I. Khukhro, Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 1995, 120 pp. | MR

[15] B. H. Neumann, “Groups covered by permutable subsets”, J. London Math. Soc., 29 (1954), 236–248 | DOI | MR | Zbl

[16] A. Paterson, Amenability, Mathematical Surveys and Monographs, 29, American Mathematical Society, Providence, RI, 1988 | DOI | MR | Zbl

[17] I. Protasov, Combinatorial Derivation, preprint, arXiv: http://arxiv.org/abs/1210.0696 | MR

[18] I. Protasov, “Partitions of groups onto large subsets”, Math. Notes, 73 (2003), 271–281 | DOI | DOI | MR | Zbl

[19] I. Protasov, T. Banakh, Ball stuctures and colorings of graphs and groups, VNTL Publ., 2003, 148 pp. | MR | Zbl

[20] I. Protasov, S. Slobodianiuk, A conjecture on partition of groups, preprint

[21] I. Protasov, S. Slobodianiuk, A note on partition of groups, preprint

[22] H. Robbins, “A remark on Stirling's formula”, Amer. Math. Monthly, 62 (1955), 26–29 | DOI | MR | Zbl

[23] S. Slobodianiuk, Unpublished note, 2012

[24] S. Solecki, “Size of subsets of groups and Haar null sets”, Geom. Funct. Anal., 15:1 (2005), 246–273 | DOI | MR | Zbl

[25] B. Weiss, “Minimal models for free actions”, Dynamical Systems and Group Actions, Contemp. Math., 567, eds. L. Bowen, R. Grigorchuk, Ya. Vorobets, Amer. Math. Soc., Providence, RI, 2012, 249–264 | DOI | MR | Zbl