Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2014_17_2_a10, author = {Witold Tomaszewski}, title = {The algorithms that recognize {Milnor} laws and properties of these laws}, journal = {Algebra and discrete mathematics}, pages = {308--332}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a10/} }
Witold Tomaszewski. The algorithms that recognize Milnor laws and properties of these laws. Algebra and discrete mathematics, Tome 17 (2014) no. 2, pp. 308-332. http://geodesic.mathdoc.fr/item/ADM_2014_17_2_a10/
[1] V. V. Belyaev, N. F. Sesekin, “Free subsemigroups in solvable groups”, Ural. Gos. Univ. Mat. Zap., 12:3 (1981), 13–18 (Russian) | MR | Zbl
[2] S. Black, “Which words spell ‘almost nilpotent’?”, J. Algebra, 221:2 (1999), 475–496 | DOI | MR | Zbl
[3] R. G. Burns R. G. and Yu. Medvedev, “Group laws implying virtual nilpotence”, J. Austral. Math. Soc., 74 (2003), 295–312 | DOI | MR | Zbl
[4] G. Endimioni, “Bounds for nilpotent-by-finite groups in certain varieties of groups”, J. Austral. Math. Soc., 73 (2002), 393–404 | DOI | MR | Zbl
[5] G. Endimioni, “On conditions for a group to satisfy given laws”, J. Group Theory, 2:2 (1999), 191–198 | DOI | MR | Zbl
[6] J. M. Gandhi, “Some group laws equivalent to the commutative law”, Bull. Austral. Math. Soc., 2 (1970), 335–345 | DOI | MR | Zbl
[7] J. R. J. Groves, “Varieties of soluble groups and a dichotomy of P. Hall”, Bull. Austral. Math. Soc., 5 (1971), 391–410 | DOI | MR | Zbl
[8] K. W. Gruenberg, “Residual properties of infinite soluble groups”, Proc. London Math. Soc. (3), 7 (1957), 29–62 | DOI | MR | Zbl
[9] N. D. Gupta, “Some group-laws equivalent to the commutative law”, Arch. Math. (Basel), 17 (1966), 97–102 | DOI | MR | Zbl
[10] W. Hołubowski, “Symmetric words in metabelian groups”, Comm. in Algebra, 23:14 (1995), 5161–5167 | DOI | MR
[11] W. Hołubowski, “Symmetric words in a free nilpotent group of class $5$”, Groups St. Andrews 1997 in Bath, I, 363–367 | MR
[12] W. Hołubowski, “Symmetric words in free nilpotent groups of class 4”, Publ. Math. Debrecen, 57:3–4 (2000), 411–419 | MR
[13] L.-C. Kappe, M. J. Tomkinson, “Some Conditions Implying that a Group is Abelian”, Algebra Colloq., 3:3 (1996), 199–212 | MR | Zbl
[14] Unsolved problems in group theory. The Kourovka Notebook, no. 17, eds. E. I. Khukhro and V. D. Mazurov, Novosibirsk, 2010 | MR
[15] Y. K. Kim, A. H. Rhemtulla, “Weak maximality condition and polycyclic groups”, Proc. Amer. Math. Soc., 123:3 (1995), 711–714 | DOI | MR | Zbl
[16] J. Math. Sci. (N. Y.), 164:2 (2010), 272–277 | DOI | MR | Zbl
[17] O. Macedońska and W. Tomaszewski, “On Engel and positive laws”, London Math. Soc. Lecture Notes, 388, 2011, 461–472 | MR | Zbl
[18] O. Macedońska and W. Tomaszewski, “Group laws $[x,y^{-1}]\equiv u(x,y)$ and varietal properties”, Comm. Algebra, 40:12 (2012), 4661–4667 | DOI | MR | Zbl
[19] A. I. Mal'tsev, “Nilpotent semigroups”, Ivanov. Gos. Ped. Inst. Uc. Zap., 4 (1953), 107–111 (in Russian) | MR | Zbl
[20] E. Marczewski, “Problem P 619”, Colloq. Math., 17 (1967), 369 | MR
[21] J. Milnor, “Growth of finitely generated solvable groups”, J. Diff. Geom., 2 (1968), 447–449 | MR | Zbl
[22] P. Moravec, “Some commutator group laws equivalent to the commutative law”, Comm. Algebra, 30:2 (2002), 671–691 | DOI | MR | Zbl
[23] H. Neumann, Varieties of groups, Springer-Verlag, 1967 | MR | Zbl
[24] B. H. Neumann and T. Taylor, “Subsemigroups of nilpotent groups”, Proc. Roy. Soc. (Series A), 274 (1963), 1–4 | DOI | MR | Zbl
[25] M. Newman, Integral matrices, Pure and Applied Mathematics, 45, Academic Press, 1972 | MR | Zbl
[26] A.Yu. Ol'shanskii, “Varieties of finitely approximable groups”, Izv. Akad. Nauk SSSR Ser. Mat., 33 (1969), 915–927 (Russian) | MR | Zbl
[27] A.Yu. Ol'shanskii, Geometry of defining relations in groups, Mathematics and its applications (Soviet Series), 70, Kluwer Academic Publishers, Dordrecht, 1991 | DOI | MR
[28] E. Płonka, “Symmetric operations in groups”, Colloq. Math., 21 (1970), 179–186 | MR
[29] E. Płonka, “Problem P 684”, Colloq. Math., 21 (1970), 339
[30] E. Płonka, “Symmetric words in nilpotent groups of class $\le 3$”, Fundamenta Math., XCVII (1977), 95–103 | MR
[31] F. Point, “Milnor identities”, Comm. Algebra, 24:12 (1996), 3725–3744 | DOI | MR | Zbl
[32] E. Psomopoulos, “Commutativity theorems for rings and groups with constraints on commutators”, Internat. J. Math. Math. Sci., 7:3 (1984), 513–517 | DOI | MR | Zbl
[33] D. J. S. Robinson, A course in the theory of groups, second edition, GTM, 80, Springer-Verlag, 1996 | MR
[34] J. R. Rosenblatt, “Invariant, measures and growth conditions”, Trans. Amer. Math. Soc., 193 (1974), 33–53 | DOI | MR | Zbl
[35] D. R. Taunt, “On $A$-groups”, Proc. Cambridge Philos. Soc., 45 (1949), 24–42 | DOI | MR | Zbl
[36] W. Tomaszewski, “Fixed points of automorphisms preserving the length of words in free solvable groups”, Arch. Math. (Basel), 99:5 (2012), 425–432 | DOI | MR | Zbl
[37] B. Wehrfritz, Group and Ring Theoretic Properties of Polycyclic Groups, Algebra and Applications, 10, Springer-Verlag, 2009 | MR | Zbl