Chromatic number of graphs with special distance sets, I
Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 135-160

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a subset $D$ of positive integers, an integer distance graph is a graph $G(\mathbb{Z}, D)$ with the set $\mathbb{Z}$ of integers as vertex set and with an edge joining two vertices $u$ and $v$ if and only if $|u - v| \in D$. In this paper we consider the problem of determining the chromatic number of certain integer distance graphs $G(\mathbb{Z}, D)$whose distance set $D$ is either 1) a set of $(n+1)$ positive integers for which the $n^{th}$ power of the last is the sum of the $n^{th}$ powers of the previous terms, or 2) a set of pythagorean quadruples, or 3) a set of pythagorean $n$-tuples, or 4) a set of square distances, or 5) a set of abundant numbers or deficient numbers or carmichael numbers, or 6) a set of polytopic numbers, or 7) a set of happy numbers or lucky numbers, or 8) a set of Lucas numbers, or 9) a set of $\mathcal{U}$lam numbers, or 10) a set of weird numbers. Besides finding the chromatic number of a few specific distance graphs we also give useful upper and lower bounds for general cases. Further, we raise some open problems.
Keywords: chromatic number, prime distance graph, unit distance graph.
@article{ADM_2014_17_1_a8,
     author = {Venkataraman Yegnanarayanan},
     title = {Chromatic number of graphs with special distance sets, {I}},
     journal = {Algebra and discrete mathematics},
     pages = {135--160},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a8/}
}
TY  - JOUR
AU  - Venkataraman Yegnanarayanan
TI  - Chromatic number of graphs with special distance sets, I
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 135
EP  - 160
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a8/
LA  - en
ID  - ADM_2014_17_1_a8
ER  - 
%0 Journal Article
%A Venkataraman Yegnanarayanan
%T Chromatic number of graphs with special distance sets, I
%J Algebra and discrete mathematics
%D 2014
%P 135-160
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a8/
%G en
%F ADM_2014_17_1_a8
Venkataraman Yegnanarayanan. Chromatic number of graphs with special distance sets, I. Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 135-160. http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a8/