Some combinatorial problems in the theory of partial transformation semigroups
Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 110-134

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_n = \{1, 2, \ldots , n\}$. On a partial transformation $\alpha : \mathop{\rm Dom}\nolimits \alpha \subseteq X_n \rightarrow \mathop{\rm Im}\alpha \subseteq X_n$ of $X_n$ the following parameters are defined: the breadth or width of $\alpha$ is $\mid\mathop{\rm Dom}\nolimits \alpha\mid$, the collapse of $\alpha$ is $c(\alpha)=\mid\cup_{t \in \mathop{\rm Im}\alpha}\{t \alpha^{-1}: \mid t\alpha^{-1}\mid \geq 2\}\mid$, fix of $\alpha$ is $f(\alpha) = \mid\{x \in X_n: x\alpha = x\}\mid$, the height of $\alpha$ is $\mid\mathop{\rm Im}\alpha\mid$, and the right [left] waist of $\alpha$ is $\max(\mathop{\rm Im}\alpha)\, [\min(\mathop{\rm Im}\alpha)]$. The cardinalities of some equivalences defined by equalities of these parameters on $\mathcal{T}_n$, the semigroup of full transformations of $X_n$, and $\mathcal{P}_n$ the semigroup of partial transformations of $X_n$ and some of their notable subsemigroups that have been computed are gathered together and the open problems highlighted.
Keywords: full transformation, breadth, collapse, height and right (left) waist of a transformation. Idempotents and nilpotents.
Mots-clés : partial transformation, fix
@article{ADM_2014_17_1_a7,
     author = {A. Umar},
     title = {Some combinatorial problems in the theory of partial transformation semigroups},
     journal = {Algebra and discrete mathematics},
     pages = {110--134},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a7/}
}
TY  - JOUR
AU  - A. Umar
TI  - Some combinatorial problems in the theory of partial transformation semigroups
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 110
EP  - 134
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a7/
LA  - en
ID  - ADM_2014_17_1_a7
ER  - 
%0 Journal Article
%A A. Umar
%T Some combinatorial problems in the theory of partial transformation semigroups
%J Algebra and discrete mathematics
%D 2014
%P 110-134
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a7/
%G en
%F ADM_2014_17_1_a7
A. Umar. Some combinatorial problems in the theory of partial transformation semigroups. Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 110-134. http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a7/