A Galois-Grothendieck-type correspondence for groupoid actions
Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 80-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present a Galois-Grothendieck-type correspondence for groupoid actions. As an application a Galois-type correspondence is also given.
Keywords: $G$-set, Galois-Grothendieck equivalence
Mots-clés : groupoid action, Galois correspondence.
@article{ADM_2014_17_1_a5,
     author = {Antonio Paques and Tha{\'\i}sa Tamusiunas},
     title = {A {Galois-Grothendieck-type} correspondence for groupoid actions},
     journal = {Algebra and discrete mathematics},
     pages = {80--97},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a5/}
}
TY  - JOUR
AU  - Antonio Paques
AU  - Thaísa Tamusiunas
TI  - A Galois-Grothendieck-type correspondence for groupoid actions
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 80
EP  - 97
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a5/
LA  - en
ID  - ADM_2014_17_1_a5
ER  - 
%0 Journal Article
%A Antonio Paques
%A Thaísa Tamusiunas
%T A Galois-Grothendieck-type correspondence for groupoid actions
%J Algebra and discrete mathematics
%D 2014
%P 80-97
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a5/
%G en
%F ADM_2014_17_1_a5
Antonio Paques; Thaísa Tamusiunas. A Galois-Grothendieck-type correspondence for groupoid actions. Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 80-97. http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a5/

[1] D. Bagio and A. Paques, “Partial groupoid actions: globalization, Morita theory and Galois theory”, Comm. Algebra, 40 (2012), 3658–3678 | DOI | MR | Zbl

[2] F. Borceux and G. Janelidze, Galois Theories, Cambridge Univ. Press, 2001 | MR | Zbl

[3] S. Chase, D. K. Harrison and A. Rosenberg, “Galois Theory and Galois Cohomology of Commutative Rings”, Mem. AMS, 52 (1968), 1–19 | MR

[4] A. Dress, “One More Shortcut to Galois Theory”, Adv. Math., 110 (1995), 129–140 | DOI | MR | Zbl

[5] M. Ferrero and A. Paques, “Galois Theory of Commutative Rings Revisited”, Beiträge zur Algebra und Geometrie, 38:2 (1997), 399–410 | MR | Zbl

[6] D. Flôres and A. Paques, “Duality for groupoid (co)actions”, Comm. Algebra, 42 (2014), 637–663 | DOI | MR

[7] A. Grothendieck, Revêtements étales et groupe fondamental, SGA 1, exposé V, LNM, 224, Sringer-Verlag, 1971 | MR

[8] M. A. Knus and M. Ojanguren, Théorie de la Descente et Algèbres d'Azumaya, Lecture Notes in Math., 389, Springer-Verlag, 1974 | MR | Zbl

[9] M. V. Lawson, Inverse Semigroups. The Theory of Partial Symmetries, World Scientific Pub. Co, London, 1998 | MR