Semiabelian and self-returning of points of $n$-ary groups
Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 70-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article new criterian Semiabelian of $n$-ary Groups is expressed through Self-Returning free point comparatively element specially built to sequences, consisting of mediums of all sides free polygonal figure with even number of the tops and one tops this polygonal figure in term symmetrical point and vector.
Keywords: Semiabelian $n$-ary group, self-returning of points, symmetric points.
@article{ADM_2014_17_1_a4,
     author = {Yu. I. Kulazhenko},
     title = {Semiabelian and self-returning of points of $n$-ary groups},
     journal = {Algebra and discrete mathematics},
     pages = {70--79},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a4/}
}
TY  - JOUR
AU  - Yu. I. Kulazhenko
TI  - Semiabelian and self-returning of points of $n$-ary groups
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 70
EP  - 79
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a4/
LA  - en
ID  - ADM_2014_17_1_a4
ER  - 
%0 Journal Article
%A Yu. I. Kulazhenko
%T Semiabelian and self-returning of points of $n$-ary groups
%J Algebra and discrete mathematics
%D 2014
%P 70-79
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a4/
%G en
%F ADM_2014_17_1_a4
Yu. I. Kulazhenko. Semiabelian and self-returning of points of $n$-ary groups. Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 70-79. http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a4/

[1] W. Dörnte, “Untersuchungen uber einen verallgemeinerten Gruppenbegrieff”, Math. Z., 19 (1928), 1–19 | MR | Zbl

[2] E. L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR

[3] A. K. Sushkevich, Theory of the generalized groups, 1937, Harkov–Kiev

[4] V. A. Artamonov, “Universal algebry”, Totals of the science and tehniki. Series algebra, Topologiya, Geometry, 1976, 191–248 | MR | Zbl

[5] K. Glazek, “Bibliographi of $n$-groups (poliadic groups) and same group like $n$-ary sistems”, Proc. of the sympos. $n$-ary structures, Skopje, 1982, 259–289

[6] S. A. Rusakov, Algebraic $n$-ary systems: sylow theory of $n$-ary groups, Belaruskaya navuka, Minsk, 1992

[7] A. M. Galmak, $n$-ary Groups, BSU, Minsk, 2007 (Russian)

[8] A. N. Skiba, Algebra of Formations, 1997, Belaruskaya Navuka, Minsk | MR | Zbl

[9] L. A. Shemetkov, A. N. Skiba, Formations of Algebraic Systems, Nauka, M., 1989 | MR

[10] Go Wenbin, K. P. Shum, “Frattini's Theory for Classes of Finite Universal Algebras of Maltsev's Manilolds”, Siberian Mathematical Bulletin, 43:6 (2003), 1283–1291 | MR

[11] Al Dababseh, A. F., “About $\tau$-closed Formations of $n$-ary Groups”, Bulletin of Vitebsk University, 3:5 (1997), 58–60

[12] Prüfer H., “Theorie der abelshen Gruppen I. Grundeigenschaften”, Math. Z., 20 (1924), 165–187 | DOI | MR

[13] J. Certain, “The ternary operation $(abc) = ab^{-1}c$ of a group”, Bull. Amer. Math. Soc., 49 (1943), 869–877 | DOI | MR | Zbl

[14] R. Baer, Linear algebra and projective geometry, Academic Press, New York, 1952 | MR | Zbl

[15] D. Branzel, “Structures affines et operations ternaries”, An. Sti. Iniv. Iasi, sect. I a Mat. (N.S.), 23 (1977), 33–38 | MR

[16] D. Vakarelov, “Ternary groups”, God. Sofij. Univ., Mat. Fak., 61, 1966/67, 71–105 | MR

[17] S. A. Rusakov, Some Applications of $n$-ary Group Theory, Belaruskaya navuka, Minsk, 1998

[18] Yu. I. Kulazhenko, “Semi-cummutativity criteria and self-coincidence of elements expressed by vectors properties of $n$-ary groups”, Algebra and Discrete Math., 9:2 (2010), 98–107 | MR

[19] Yu. I. Kulazhenko, “Geometry of parallelograms”, Vopr. Algeb. and Prik. Mat., Izdat. Belorus. Gos. Univ. Transp., Gomel, 1995, 65–82

[20] A. G. Kurosh, Lectures on general algebra, ed. K. A. Hirsh, Chelsea, New York, 1963 ; Translated from the Russian edition, Moscow, 1960 | MR

[21] Yu. I. Kulazhenko, “Geometry of semiabelian $n$-ary groups”, Quasigroups and Related systems, 19:2 (2011), 265–278 | MR | Zbl