Algorithmic computation of principal posets using Maple and Python
Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 33-69

Voir la notice de l'article provenant de la source Math-Net.Ru

We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets $I$ that are principal, i.e., the rational symmetric Gram matrix $G_I : = \frac{1}{2}[C_I+ C^{tr}_I]\in\mathbb{M}_I(\mathbb{Q})$ of $I$ is positive semi-definite of corank one, where $C_I\in\mathbb{M}_I(\mathbb{Z})$ is the incidence matrix of $I$. With any such a connected poset $I$, we associate a simply laced Euclidean diagram $DI\in \{\widetilde{\mathbb{A}}_n, \widetilde{\mathbb{D}}_n, \widetilde{\mathbb{E}}_6, \widetilde{\mathbb{E}}_7, \widetilde{\mathbb{E}}_8\}$, the Coxeter matrix ${\rm Cox}_I:= - C_I\cdot C^{-tr}_I$, its complex Coxeter spectrum ${\mathbf{specc}}_I$, and a reduced Coxeter number $\check {\mathbf{c}}_I$. One of our aims is to show that the spectrum ${\mathbf{specc}}_I$ of any such a poset $I$ determines the incidence matrix $C_I$ (hence the poset $I$) uniquely, up to a $\mathbb{Z}$-congruence. By computer calculations, we find a complete list of principal one-peak posets $I$ (i.e., $I$ has a unique maximal element) of cardinality $\leq 15$, together with ${\mathbf{specc}}_I$, $\check {\mathbf{c}}_I$, the incidence defect $\partial_I:\mathbb{Z}^I \to\mathbb{Z}$, and the Coxeter-Euclidean type $DI$. In case when $DI \in \{\widetilde{\mathbb{A}}_n, \widetilde{\mathbb{D}}_n , \widetilde{\mathbb{E}}_6, \widetilde{\mathbb{E}}_7, \widetilde{\mathbb{E}}_8\}$ and $n:=|I|$ is relatively small, we show that given such a principal poset $I$, the incidence matrix $ C_I$ is $\mathbb{Z}$-congruent with the non-symmetric Gram matrix $ \check G_{DI}$ of $DI$, ${\mathbf{specc}}_I = {\mathbf{specc}}_{DI}$ and $\check {\mathbf{c}}_I= \check {\mathbf{c}}_{DI}$. Moreover, given a pair of principal posets $I$ and $J$, with $|I|= |J| \leq 15$, the matrices $C_I$ and $C_J$ are $\mathbb{Z}$-congruent if and only if ${\mathbf{specc}}_I= {\mathbf{specc}}_J$.
Keywords: principal poset; edge-bipartite graph; unit quadratic form; computer algorithm; Gram matrix, Coxeter spectrum.
Mots-clés : Coxeter polynomial
@article{ADM_2014_17_1_a3,
     author = {Marcin G\k{a}siorek and Daniel Simson and Katarzyna Zaj\k{a}c},
     title = {Algorithmic computation of principal posets using {Maple} and {Python}},
     journal = {Algebra and discrete mathematics},
     pages = {33--69},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a3/}
}
TY  - JOUR
AU  - Marcin Gąsiorek
AU  - Daniel Simson
AU  - Katarzyna Zając
TI  - Algorithmic computation of principal posets using Maple and Python
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 33
EP  - 69
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a3/
LA  - en
ID  - ADM_2014_17_1_a3
ER  - 
%0 Journal Article
%A Marcin Gąsiorek
%A Daniel Simson
%A Katarzyna Zając
%T Algorithmic computation of principal posets using Maple and Python
%J Algebra and discrete mathematics
%D 2014
%P 33-69
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a3/
%G en
%F ADM_2014_17_1_a3
Marcin Gąsiorek; Daniel Simson; Katarzyna Zając. Algorithmic computation of principal posets using Maple and Python. Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 33-69. http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a3/