Non-contracting groups generated by (3,2)-automata
Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 20-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We add to the classification of groups generated by 3-state automata over a 2-letter alphabet given by Bondarenko et al., by showing that a number of the groups in the classification are non-contracting. We show that the criterion we use to prove a self-similar action is non-contracting also implies that the associated self-similarity graph introduced by Nekrashevych is non-hyperbolic.
Keywords: self-similar group, contracting action, self-similarity graph.
Mots-clés : automaton group
@article{ADM_2014_17_1_a2,
     author = {Nick Davis and Murray Elder and Lawrence Reeves},
     title = {Non-contracting  groups generated by (3,2)-automata},
     journal = {Algebra and discrete mathematics},
     pages = {20--32},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a2/}
}
TY  - JOUR
AU  - Nick Davis
AU  - Murray Elder
AU  - Lawrence Reeves
TI  - Non-contracting  groups generated by (3,2)-automata
JO  - Algebra and discrete mathematics
PY  - 2014
SP  - 20
EP  - 32
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a2/
LA  - en
ID  - ADM_2014_17_1_a2
ER  - 
%0 Journal Article
%A Nick Davis
%A Murray Elder
%A Lawrence Reeves
%T Non-contracting  groups generated by (3,2)-automata
%J Algebra and discrete mathematics
%D 2014
%P 20-32
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a2/
%G en
%F ADM_2014_17_1_a2
Nick Davis; Murray Elder; Lawrence Reeves. Non-contracting  groups generated by (3,2)-automata. Algebra and discrete mathematics, Tome 17 (2014) no. 1, pp. 20-32. http://geodesic.mathdoc.fr/item/ADM_2014_17_1_a2/

[1] Ievgen Bondarenko, Rostislav Grigorchuk, Rostyslav Kravchenko, Yevgen Muntyan, Volodymyr Nekrashevych, Dmytro Savchuk, and Zoran Šunić, “On classification of groups generated by 3-state automata over a 2-letter alphabet”, Algebra Discrete Math., 2008, no. 1, 1–163 | MR | Zbl

[2] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999 | MR | Zbl

[3] Yevgen Muntyan, Automata Groups, PhD thesis, Texas A University, 2009 | MR

[4] Volodymyr Nekrashevych, “Self-similar groups”, Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, 2005 | MR