Algorithms computing ${\rm O}(n, \mathbb{Z})$-orbits of $P$-critical edge-bipartite graphs and $P$-critical unit forms using Maple and C\#
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 242-286

Voir la notice de l'article provenant de la source Math-Net.Ru

We present combinatorial algorithms constructing loop-free $P$-critical edge-bipartite (signed) graphs $\Delta'$, with $n\geq 3$ vertices, from pairs $(\Delta , w)$, with $\Delta $ a positive edge-bipartite graph having $n-1$ vertices and $w$ a sincere root of $\Delta $, up to an action $*:\mathcal{U} \mathcal{B} igr_n \times {\rm O}(n,\mathbb{Z}) \to \mathcal{U}\mathcal{B} igr_n$ of the orthogonal group ${\rm O}(n,\mathbb{Z})$ on the set $\mathcal{U} \mathcal{B} igr_n$ of loop-free edge-bipartite graphs, with $n\geq 3$ vertices. Here $\mathbb{Z}$ is the ring of integers. We also present a package of algorithms for a Coxeter spectral analysis of graphs in $\mathcal{U} \mathcal{B} igr_n$ and for computing the ${\rm O}(n, \mathbb{Z})$-orbits of $P$-critical graphs $\Delta$ in $\mathcal{U} \mathcal{B} igr_n$ as well as the positive ones. By applying the package, symbolic computations in Maple and numerical computations in C#, we compute $P$-critical graphs in $\mathcal{U} \mathcal{B} igr_n$ and connected positive graphs in $\mathcal{U} \mathcal{B} igr_n$, together with their Coxeter polynomials, reduced Coxeter numbers, and the ${\rm O}(n, \mathbb{Z})$-orbits, for $n\leq 10$. The computational results are presented in tables of Section 5.
Keywords: unit quadratic form, $P$-critical edge-bipartite graph, sincere root, algorithm, Euclidean diagram.
Mots-clés : edge-bipartite graph, Gram matrix, orthogonal group, Coxeter polynomial
@article{ADM_2013_16_2_a8,
     author = {A. Polak and D. Simson},
     title = {Algorithms computing ${\rm O}(n, \mathbb{Z})$-orbits of $P$-critical edge-bipartite graphs and $P$-critical unit forms using {Maple} and {C\#}},
     journal = {Algebra and discrete mathematics},
     pages = {242--286},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a8/}
}
TY  - JOUR
AU  - A. Polak
AU  - D. Simson
TI  - Algorithms computing ${\rm O}(n, \mathbb{Z})$-orbits of $P$-critical edge-bipartite graphs and $P$-critical unit forms using Maple and C\#
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 242
EP  - 286
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a8/
LA  - en
ID  - ADM_2013_16_2_a8
ER  - 
%0 Journal Article
%A A. Polak
%A D. Simson
%T Algorithms computing ${\rm O}(n, \mathbb{Z})$-orbits of $P$-critical edge-bipartite graphs and $P$-critical unit forms using Maple and C\#
%J Algebra and discrete mathematics
%D 2013
%P 242-286
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a8/
%G en
%F ADM_2013_16_2_a8
A. Polak; D. Simson. Algorithms computing ${\rm O}(n, \mathbb{Z})$-orbits of $P$-critical edge-bipartite graphs and $P$-critical unit forms using Maple and C\#. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 242-286. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a8/