On derived $\pi$-length of a finite $\pi$-solvable group with supersolvable $\pi$-Hall subgroup
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 233-241

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $\pi$-Hall subgroup is a supersolvable group then the derived $\pi$-length of a $\pi$-solvable group $G$ is at most $1+ \max_{r\in \pi}l_r^a(G),$ where $l_r^a(G)$ is the derived $r$-length of a $\pi$-solvable group $G.$
Keywords: finite group, $\pi$-Hall subgroup, derived $\pi$-length.
Mots-clés : $\pi$-soluble group, supersolvable group
@article{ADM_2013_16_2_a7,
     author = {V. S. Monakhov and D. V. Gritsuk},
     title = {On derived $\pi$-length of a finite $\pi$-solvable group with  supersolvable $\pi${-Hall} subgroup},
     journal = {Algebra and discrete mathematics},
     pages = {233--241},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - D. V. Gritsuk
TI  - On derived $\pi$-length of a finite $\pi$-solvable group with  supersolvable $\pi$-Hall subgroup
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 233
EP  - 241
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/
LA  - en
ID  - ADM_2013_16_2_a7
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A D. V. Gritsuk
%T On derived $\pi$-length of a finite $\pi$-solvable group with  supersolvable $\pi$-Hall subgroup
%J Algebra and discrete mathematics
%D 2013
%P 233-241
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/
%G en
%F ADM_2013_16_2_a7
V. S. Monakhov; D. V. Gritsuk. On derived $\pi$-length of a finite $\pi$-solvable group with  supersolvable $\pi$-Hall subgroup. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 233-241. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/