Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2013_16_2_a7, author = {V. S. Monakhov and D. V. Gritsuk}, title = {On derived $\pi$-length of a finite $\pi$-solvable group with supersolvable $\pi${-Hall} subgroup}, journal = {Algebra and discrete mathematics}, pages = {233--241}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/} }
TY - JOUR AU - V. S. Monakhov AU - D. V. Gritsuk TI - On derived $\pi$-length of a finite $\pi$-solvable group with supersolvable $\pi$-Hall subgroup JO - Algebra and discrete mathematics PY - 2013 SP - 233 EP - 241 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/ LA - en ID - ADM_2013_16_2_a7 ER -
%0 Journal Article %A V. S. Monakhov %A D. V. Gritsuk %T On derived $\pi$-length of a finite $\pi$-solvable group with supersolvable $\pi$-Hall subgroup %J Algebra and discrete mathematics %D 2013 %P 233-241 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/ %G en %F ADM_2013_16_2_a7
V. S. Monakhov; D. V. Gritsuk. On derived $\pi$-length of a finite $\pi$-solvable group with supersolvable $\pi$-Hall subgroup. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 233-241. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/
[1] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[2] V. S. Monakhov, Introduction to the theory of finite groups and their classes, Higher School, Minsk, 2006 (in Russian)
[3] V. S. Monakhov, O. A. Shpyrko, “On nilpotent $\pi$-length of a finite $\pi$-solvable group”, Discrete Mathematics, 13:3 (2001), 145–152 (in Russian) | MR | Zbl
[4] D. V. Gritsuk, V. S. Monakhov, O. A. Shpyrko, “On derived $\pi$-length of a $\pi$-solvable group”, BSU Vestnik, Series 1, 2012, no. 3, 90–95 (in Russian)
[5] D. V. Gritsuk, V. S. Monakhov, O. A. Shpyrko, “On finite $\pi$-solvable groups with bicyclic Sylow subgroups”, Promlems of Physics, Mathematics and Technics, 2013, no. 1(14), 61–66 (in Russian)
[6] D. V. Gritsuk, V. S. Monakhov, “On solvable groups whose Sylow subgroups are either abelian or extraspecial”, Proceedings of the Institute of Mathematics of NAS of Belarus, 20:2 (2012), 3–9 (in Russian) | MR
[7] V. S. Monakhov, E. E. Gribovskaya, “On maximal and Sylow subgroups of a finite solvable groups”, Mathematical Notes, 70:4 (2001), 603–612 (in Russian) | MR | Zbl
[8] O. Yu. Schmidt, “Groups whose all subgroups are special”, Mathematics Sbornik, 31 (1924), 366–372 (in Russian) | Zbl
[9] V. S. Monakhov, “The Schmidt subgroups, its existence, and some of their classes”, Tr. Ukraini. Mat. Congr., Section 1 (2001), Kiev, 2002, 81–90 (in Russian) | MR | Zbl
[10] L. A. Shemetkov, Yi. Xiaolan, “On the $p$-length of finite $p$-soluble groups”, Proceedings of the Institute of Mathematics of NAS of Belarus, 16:1 (2008), 93–96 | MR
[11] B. Huppert, “Normalteiler und maximale Untergruppen endlicher Gruppen”, Mathematische Zeitschrift, 60 (1954), 409–434 | DOI | MR | Zbl
[12] K. Doerk, “Minimal nicht über auflösbare, endliche Gruppen”, Mathematische Zeitschrift, 91 (1966), 198–205 | DOI | MR | Zbl
[13] V. T. Nagrebetskii, “On finite minimal non-supersolvable groups”, Finite groups, Science and Technics, Minsk, 1975, 104–108 (in Russian) | MR
[14] S. S. Levischenko, N. Ph. Kuzenny, “Constructive description of finite minimal non-supersolvable groups”, Questions in algebra, 3, Minsk, 1987, 56–63 (in Russian)
[15] Yu. M. Gorchakov, “Primitive factorable groups”, Proceedings of the University of Perm, 1960, no. 17, 15–31 (in Russian)
[16] Ph. Hall, “Complemented group”, J. London Math. Soc., 12 (1937), 201–204 | DOI | MR