Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2013_16_2_a7, author = {V. S. Monakhov and D. V. Gritsuk}, title = {On derived $\pi$-length of a finite $\pi$-solvable group with supersolvable $\pi${-Hall} subgroup}, journal = {Algebra and discrete mathematics}, pages = {233--241}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/} }
TY - JOUR AU - V. S. Monakhov AU - D. V. Gritsuk TI - On derived $\pi$-length of a finite $\pi$-solvable group with supersolvable $\pi$-Hall subgroup JO - Algebra and discrete mathematics PY - 2013 SP - 233 EP - 241 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/ LA - en ID - ADM_2013_16_2_a7 ER -
%0 Journal Article %A V. S. Monakhov %A D. V. Gritsuk %T On derived $\pi$-length of a finite $\pi$-solvable group with supersolvable $\pi$-Hall subgroup %J Algebra and discrete mathematics %D 2013 %P 233-241 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/ %G en %F ADM_2013_16_2_a7
V. S. Monakhov; D. V. Gritsuk. On derived $\pi$-length of a finite $\pi$-solvable group with supersolvable $\pi$-Hall subgroup. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 233-241. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/