On derived $\pi$-length of a finite $\pi$-solvable group with supersolvable $\pi$-Hall subgroup
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 233-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $\pi$-Hall subgroup is a supersolvable group then the derived $\pi$-length of a $\pi$-solvable group $G$ is at most $1+ \max_{r\in \pi}l_r^a(G),$ where $l_r^a(G)$ is the derived $r$-length of a $\pi$-solvable group $G.$
Keywords: finite group, $\pi$-Hall subgroup, derived $\pi$-length.
Mots-clés : $\pi$-soluble group, supersolvable group
@article{ADM_2013_16_2_a7,
     author = {V. S. Monakhov and D. V. Gritsuk},
     title = {On derived $\pi$-length of a finite $\pi$-solvable group with  supersolvable $\pi${-Hall} subgroup},
     journal = {Algebra and discrete mathematics},
     pages = {233--241},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - D. V. Gritsuk
TI  - On derived $\pi$-length of a finite $\pi$-solvable group with  supersolvable $\pi$-Hall subgroup
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 233
EP  - 241
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/
LA  - en
ID  - ADM_2013_16_2_a7
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A D. V. Gritsuk
%T On derived $\pi$-length of a finite $\pi$-solvable group with  supersolvable $\pi$-Hall subgroup
%J Algebra and discrete mathematics
%D 2013
%P 233-241
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/
%G en
%F ADM_2013_16_2_a7
V. S. Monakhov; D. V. Gritsuk. On derived $\pi$-length of a finite $\pi$-solvable group with  supersolvable $\pi$-Hall subgroup. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 233-241. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a7/

[1] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[2] V. S. Monakhov, Introduction to the theory of finite groups and their classes, Higher School, Minsk, 2006 (in Russian)

[3] V. S. Monakhov, O. A. Shpyrko, “On nilpotent $\pi$-length of a finite $\pi$-solvable group”, Discrete Mathematics, 13:3 (2001), 145–152 (in Russian) | MR | Zbl

[4] D. V. Gritsuk, V. S. Monakhov, O. A. Shpyrko, “On derived $\pi$-length of a $\pi$-solvable group”, BSU Vestnik, Series 1, 2012, no. 3, 90–95 (in Russian)

[5] D. V. Gritsuk, V. S. Monakhov, O. A. Shpyrko, “On finite $\pi$-solvable groups with bicyclic Sylow subgroups”, Promlems of Physics, Mathematics and Technics, 2013, no. 1(14), 61–66 (in Russian)

[6] D. V. Gritsuk, V. S. Monakhov, “On solvable groups whose Sylow subgroups are either abelian or extraspecial”, Proceedings of the Institute of Mathematics of NAS of Belarus, 20:2 (2012), 3–9 (in Russian) | MR

[7] V. S. Monakhov, E. E. Gribovskaya, “On maximal and Sylow subgroups of a finite solvable groups”, Mathematical Notes, 70:4 (2001), 603–612 (in Russian) | MR | Zbl

[8] O. Yu. Schmidt, “Groups whose all subgroups are special”, Mathematics Sbornik, 31 (1924), 366–372 (in Russian) | Zbl

[9] V. S. Monakhov, “The Schmidt subgroups, its existence, and some of their classes”, Tr. Ukraini. Mat. Congr., Section 1 (2001), Kiev, 2002, 81–90 (in Russian) | MR | Zbl

[10] L. A. Shemetkov, Yi. Xiaolan, “On the $p$-length of finite $p$-soluble groups”, Proceedings of the Institute of Mathematics of NAS of Belarus, 16:1 (2008), 93–96 | MR

[11] B. Huppert, “Normalteiler und maximale Untergruppen endlicher Gruppen”, Mathematische Zeitschrift, 60 (1954), 409–434 | DOI | MR | Zbl

[12] K. Doerk, “Minimal nicht über auflösbare, endliche Gruppen”, Mathematische Zeitschrift, 91 (1966), 198–205 | DOI | MR | Zbl

[13] V. T. Nagrebetskii, “On finite minimal non-supersolvable groups”, Finite groups, Science and Technics, Minsk, 1975, 104–108 (in Russian) | MR

[14] S. S. Levischenko, N. Ph. Kuzenny, “Constructive description of finite minimal non-supersolvable groups”, Questions in algebra, 3, Minsk, 1987, 56–63 (in Russian)

[15] Yu. M. Gorchakov, “Primitive factorable groups”, Proceedings of the University of Perm, 1960, no. 17, 15–31 (in Russian)

[16] Ph. Hall, “Complemented group”, J. London Math. Soc., 12 (1937), 201–204 | DOI | MR