Serial group rings of finite groups. $p$-solvability
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 201-216

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for any finite $p$-solvable group $G$ with a cyclic $p$-Sylow subgroup and any field $F$ of characteristic $p$, the group ring $FG$ is serial. As a corollary for an arbitrary field we will produce a list of all groups of order $\leq 100$ whose group rings are serial.
Keywords: Serial ring, group ring
Mots-clés : $p$-solvable group.
@article{ADM_2013_16_2_a4,
     author = {A. Kukharev and G. Puninski},
     title = {Serial group rings of finite groups. $p$-solvability},
     journal = {Algebra and discrete mathematics},
     pages = {201--216},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a4/}
}
TY  - JOUR
AU  - A. Kukharev
AU  - G. Puninski
TI  - Serial group rings of finite groups. $p$-solvability
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 201
EP  - 216
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a4/
LA  - en
ID  - ADM_2013_16_2_a4
ER  - 
%0 Journal Article
%A A. Kukharev
%A G. Puninski
%T Serial group rings of finite groups. $p$-solvability
%J Algebra and discrete mathematics
%D 2013
%P 201-216
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a4/
%G en
%F ADM_2013_16_2_a4
A. Kukharev; G. Puninski. Serial group rings of finite groups. $p$-solvability. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 201-216. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a4/