Serial group rings of finite groups. $p$-solvability
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 201-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for any finite $p$-solvable group $G$ with a cyclic $p$-Sylow subgroup and any field $F$ of characteristic $p$, the group ring $FG$ is serial. As a corollary for an arbitrary field we will produce a list of all groups of order $\leq 100$ whose group rings are serial.
Keywords: Serial ring, group ring
Mots-clés : $p$-solvable group.
@article{ADM_2013_16_2_a4,
     author = {A. Kukharev and G. Puninski},
     title = {Serial group rings of finite groups. $p$-solvability},
     journal = {Algebra and discrete mathematics},
     pages = {201--216},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a4/}
}
TY  - JOUR
AU  - A. Kukharev
AU  - G. Puninski
TI  - Serial group rings of finite groups. $p$-solvability
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 201
EP  - 216
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a4/
LA  - en
ID  - ADM_2013_16_2_a4
ER  - 
%0 Journal Article
%A A. Kukharev
%A G. Puninski
%T Serial group rings of finite groups. $p$-solvability
%J Algebra and discrete mathematics
%D 2013
%P 201-216
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a4/
%G en
%F ADM_2013_16_2_a4
A. Kukharev; G. Puninski. Serial group rings of finite groups. $p$-solvability. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 201-216. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a4/

[1] J. L. Alperin, Local Representation Theory, Cambridge University Press, 1986 | MR | Zbl

[2] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer Graduate Texts in Math., 13, 2d edition, 1992 | DOI | MR

[3] Y. Baba, K. Oshiro, Classical Artinian Rings, World Scient. Publ., 2009

[4] W. Bosma, J. Cannon, C. Playoust, “The Magma algebra system. I: The user language”, J. Symb. Comp., 24:3/4 (1997), 235–265 http://magma.maths.usyd.edu.au/magma/ | DOI | MR | Zbl

[5] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.4, , 2006 http://www.gap-system.org/

[6] M. Hazewinkel, N. Gubareni, V. V. Kirichenko, Algebras, Rings and Modules, v. 1, Kluwer, 2004 | Zbl

[7] D. G. Higman, “Indecomposable representations at characteristic $p$”, Duke J. Math., 21 (1954), 377–381 | DOI | MR | Zbl

[8] G. D. James, The Representation Theory of the Symmmetric Group, Lecture Notes in Math., 682, 1978

[9] A. V. Kukharev, G. Puninski, “Serial group rings of finite groups. $p$-nilpotency”, Notes of Scientific Seminars of St. Petersburg Branch of Steklov Mathematical Institute, 413 (2013), 134–152 | MR

[10] K. Morita, “On group rings over a modular field which possess radicals expressible as principal ideals”, Sci. Repts. Tokyo Daigaku, 4 (1951), 177–194 | MR | Zbl

[11] I. Murase, “Generalized uniserial group rings, I”, Sci. Papers College Gener. Educ. Univ. Tokyo, 15 (1965), 15–28 | MR | Zbl

[12] I. Murase, “Generalized uniserial group rings, II”, Sci. Papers College Gener. Educ. Univ. Tokyo, 15 (1965), 111–128 | MR | Zbl

[13] T. Nakayama, “Note on uni-serial and generalized uni-serial rings”, Proc. Imp. Acad. Tokyo, 16 (1940), 285–289 | DOI | MR

[14] D. S. Passman, The Algebraic Structure of Group Rings, Krieger Publishing Company, 1985 | MR | Zbl

[15] G. Puninski, Serial Rings, Kluwer, 2001 | MR | Zbl

[16] B. Srinivasan, “On the indecomposable representations of a certain class of groups”, Proc. Lond. Math. Soc., 10 (1960), 497–513 | DOI | MR | Zbl

[17] A. A. Tuganbaev, Ring Theory. Arithmetical Modules and Rings, M., 2009

[18] H. Wielandt, “Sylowgruppen and Kompositions-Struktur”, Abhand. Math. Sem. Hamburg, 22 (1958), 215–228 | DOI | MR | Zbl