Differential graded categories associated with the critical semi-definite quadratic forms
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 188-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work concerns with classification problem of differential graded categories with critical semi-definite quadratic form. We prove that such problem which satisfies some correctness conditions can be transformed to differential graded category with directed graded graph, which is a quiver of affine (extended) type.
Keywords: differential graded category, graded graph, critical quadratic form, affine diagram.
@article{ADM_2013_16_2_a3,
     author = {O. Gnatiuk and N. Golovashchuk},
     title = {Differential graded categories associated with the critical semi-definite quadratic forms},
     journal = {Algebra and discrete mathematics},
     pages = {188--200},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a3/}
}
TY  - JOUR
AU  - O. Gnatiuk
AU  - N. Golovashchuk
TI  - Differential graded categories associated with the critical semi-definite quadratic forms
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 188
EP  - 200
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a3/
LA  - en
ID  - ADM_2013_16_2_a3
ER  - 
%0 Journal Article
%A O. Gnatiuk
%A N. Golovashchuk
%T Differential graded categories associated with the critical semi-definite quadratic forms
%J Algebra and discrete mathematics
%D 2013
%P 188-200
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a3/
%G en
%F ADM_2013_16_2_a3
O. Gnatiuk; N. Golovashchuk. Differential graded categories associated with the critical semi-definite quadratic forms. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 188-200. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a3/

[1] Y. A. Drozd, “Reduction algorithm and representations of boxes and algebras”, Comtes Rendue Math. Acad. Sci. Canada, 23 (2001), 97–125 | MR | Zbl

[2] A. V. Roiter, “The roots of integral quadratic forms”, Quadratic forms and representations, Kiev, 1978, 3–17 | MR

[3] S. A. Ovsienko, “Integer weakly positive forms”, Shurian Matrix problems and quadratic forms, Kiev, 1978, 3–17

[4] M. Barot, J. A. de la Pena, “The Dynkin type of a non-negative unit form”, Expo. Math., 17 (1999), 339–348 | MR | Zbl

[5] O. Gnatiuk, N. Golovashchuk, “Differential Graded Categories Associated with the Dynkin diagrams”, Scientific Journal of National Pedagogical Dragomanov University. Serie 1. Physics and Matematics Science, 14 (2013)