Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2013_16_2_a3, author = {O. Gnatiuk and N. Golovashchuk}, title = {Differential graded categories associated with the critical semi-definite quadratic forms}, journal = {Algebra and discrete mathematics}, pages = {188--200}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a3/} }
TY - JOUR AU - O. Gnatiuk AU - N. Golovashchuk TI - Differential graded categories associated with the critical semi-definite quadratic forms JO - Algebra and discrete mathematics PY - 2013 SP - 188 EP - 200 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a3/ LA - en ID - ADM_2013_16_2_a3 ER -
%0 Journal Article %A O. Gnatiuk %A N. Golovashchuk %T Differential graded categories associated with the critical semi-definite quadratic forms %J Algebra and discrete mathematics %D 2013 %P 188-200 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a3/ %G en %F ADM_2013_16_2_a3
O. Gnatiuk; N. Golovashchuk. Differential graded categories associated with the critical semi-definite quadratic forms. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 188-200. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a3/
[1] Y. A. Drozd, “Reduction algorithm and representations of boxes and algebras”, Comtes Rendue Math. Acad. Sci. Canada, 23 (2001), 97–125 | MR | Zbl
[2] A. V. Roiter, “The roots of integral quadratic forms”, Quadratic forms and representations, Kiev, 1978, 3–17 | MR
[3] S. A. Ovsienko, “Integer weakly positive forms”, Shurian Matrix problems and quadratic forms, Kiev, 1978, 3–17
[4] M. Barot, J. A. de la Pena, “The Dynkin type of a non-negative unit form”, Expo. Math., 17 (1999), 339–348 | MR | Zbl
[5] O. Gnatiuk, N. Golovashchuk, “Differential Graded Categories Associated with the Dynkin diagrams”, Scientific Journal of National Pedagogical Dragomanov University. Serie 1. Physics and Matematics Science, 14 (2013)