Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2013_16_2_a10, author = {A. A. Talebi and N. Mehdipoor}, title = {Classifying cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$}, journal = {Algebra and discrete mathematics}, pages = {293--298}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a10/} }
TY - JOUR AU - A. A. Talebi AU - N. Mehdipoor TI - Classifying cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$ JO - Algebra and discrete mathematics PY - 2013 SP - 293 EP - 298 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a10/ LA - en ID - ADM_2013_16_2_a10 ER -
A. A. Talebi; N. Mehdipoor. Classifying cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 293-298. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a10/
[1] M. Alaeiyan, M. K. Hosseinipoor, “A classification of the cubic $s$-regular graphs of orders $12p$ and $12p^{2}$”, Acta Universitatis Apulensis, 2011, 153–158 | MR | Zbl
[2] W. Bosma, J. Cannon, Handbook of Magma Function, Sydney University Press, Sydney, 1994
[3] Y. Cheng, J. Oxley, “On weakly symmetric graphs of order twice a prime”, J. Combin. Theory Ser. B, 42 (1987), 196–211 | DOI | MR | Zbl
[4] M. D. E. Conder, Trivalent (cubic) symmetric graphs on up to 2048 vertices, , 2006 http://www.math.auckland.ac.nz/c̃onder/symmcubic2048list.txt
[5] M. D. E. Conder, P. Dobcsányi, “Trivalent symmetric graphs on up to 768 vertices”, J. Combin. Math. Combin. Comput., 40 (2002), 41–63 | MR | Zbl
[6] J. H. Conway, R. T. Curties, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[7] Y. Q. Feng, J. H. Kwak, “Classifying cubic symmetric graphs of order $10p$ or $10p^{2}$”, Sci. China Ser. A, 49 (2006), 300–319 | DOI | MR | Zbl
[8] Y. Q. Feng, J. H. Kwak, “Cubic symmetric graphs of order a small number times a prime or a prime square”, J. Combin. Theory Ser. B, 97 (2007), 627–646 | DOI | MR | Zbl
[9] Y. Q. Feng, J. H. Kwak, “Cubic symmetric graphs of order twice an odd prime-power”, J. Aust. Math. Soc., 81 (2006), 153–164 | DOI | MR | Zbl
[10] Y. Q. Feng, J. H. Kwak, “One-regular cubic graphs of order a small number times a prime or a prime square”, J. Aust. Math. Soc., 76 (2004), 345–356 | DOI | MR | Zbl
[11] Y. Q. Feng, J. H. Kwak, K. Wang, “Classifying cubic symmetric graphs of order $8p$ or $8p^{2}$”, European J. Combin., 26 (2005), 1033–1052 | DOI | MR | Zbl
[12] Y. Q. Feng, J. H. Kwak, M. Y. Xu, “Cubic $s$-regular graphs of order $2p^{3}$”, J. Graph Theory, 52 (2006), 341–352 | DOI | MR | Zbl
[13] D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982 | MR | Zbl
[14] P. Lorimer, “Vertex-transitive graphs: Symmetric graphs of prime valency”, J. Graph Theory, 8 (1984), 55–68 | DOI | MR | Zbl
[15] J. M. Oh, “A classification of cubic s-regular graphs of order $14p$”, Discrete Math., 309 (2009), 2721–2726 | DOI | MR | Zbl
[16] J. M. Oh, “A classification of cubic $s$-regular graphs of order $16p$”, Discrete Math., 309 (2009), 3150–3155 | DOI | MR | Zbl
[17] W. T. Tutte, “A family of cubical graphs”, Proc. Cambridge Philos. Soc., 43 (1947), 459–474 | DOI | MR | Zbl
[18] W. T. Tutte, “On the symmetry of cubic graphs”, Canad. J. Math., 11 (1959), 621–624 | DOI | MR | Zbl