Classifying cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 293-298
Voir la notice de l'article provenant de la source Math-Net.Ru
A graph is $s$-regular if its automorphism group acts regularly on the set of $s$-arcs. In this study, we classify the connected cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$ for each $ s \geq 1 $, and each prime $p$.
Keywords:
$s$-regular graphs, $s$-arc-transitive graphs, symmetric graphs, regular covering.
@article{ADM_2013_16_2_a10,
author = {A. A. Talebi and N. Mehdipoor},
title = {Classifying cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$},
journal = {Algebra and discrete mathematics},
pages = {293--298},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a10/}
}
TY - JOUR
AU - A. A. Talebi
AU - N. Mehdipoor
TI - Classifying cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$
JO - Algebra and discrete mathematics
PY - 2013
SP - 293
EP - 298
VL - 16
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a10/
LA - en
ID - ADM_2013_16_2_a10
ER -
A. A. Talebi; N. Mehdipoor. Classifying cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 293-298. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a10/