Classifying cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 293-298.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph is $s$-regular if its automorphism group acts regularly on the set of $s$-arcs. In this study, we classify the connected cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$ for each $ s \geq 1 $, and each prime $p$.
Keywords: $s$-regular graphs, $s$-arc-transitive graphs, symmetric graphs, regular covering.
@article{ADM_2013_16_2_a10,
     author = {A. A. Talebi and N. Mehdipoor},
     title = {Classifying cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$},
     journal = {Algebra and discrete mathematics},
     pages = {293--298},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a10/}
}
TY  - JOUR
AU  - A. A. Talebi
AU  - N. Mehdipoor
TI  - Classifying cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 293
EP  - 298
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a10/
LA  - en
ID  - ADM_2013_16_2_a10
ER  - 
%0 Journal Article
%A A. A. Talebi
%A N. Mehdipoor
%T Classifying cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$
%J Algebra and discrete mathematics
%D 2013
%P 293-298
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a10/
%G en
%F ADM_2013_16_2_a10
A. A. Talebi; N. Mehdipoor. Classifying cubic $s$-regular graphs of orders $22p $ and $ 22p^{2}$. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 293-298. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a10/

[1] M. Alaeiyan, M. K. Hosseinipoor, “A classification of the cubic $s$-regular graphs of orders $12p$ and $12p^{2}$”, Acta Universitatis Apulensis, 2011, 153–158 | MR | Zbl

[2] W. Bosma, J. Cannon, Handbook of Magma Function, Sydney University Press, Sydney, 1994

[3] Y. Cheng, J. Oxley, “On weakly symmetric graphs of order twice a prime”, J. Combin. Theory Ser. B, 42 (1987), 196–211 | DOI | MR | Zbl

[4] M. D. E. Conder, Trivalent (cubic) symmetric graphs on up to 2048 vertices, , 2006 http://www.math.auckland.ac.nz/c̃onder/symmcubic2048list.txt

[5] M. D. E. Conder, P. Dobcsányi, “Trivalent symmetric graphs on up to 768 vertices”, J. Combin. Math. Combin. Comput., 40 (2002), 41–63 | MR | Zbl

[6] J. H. Conway, R. T. Curties, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[7] Y. Q. Feng, J. H. Kwak, “Classifying cubic symmetric graphs of order $10p$ or $10p^{2}$”, Sci. China Ser. A, 49 (2006), 300–319 | DOI | MR | Zbl

[8] Y. Q. Feng, J. H. Kwak, “Cubic symmetric graphs of order a small number times a prime or a prime square”, J. Combin. Theory Ser. B, 97 (2007), 627–646 | DOI | MR | Zbl

[9] Y. Q. Feng, J. H. Kwak, “Cubic symmetric graphs of order twice an odd prime-power”, J. Aust. Math. Soc., 81 (2006), 153–164 | DOI | MR | Zbl

[10] Y. Q. Feng, J. H. Kwak, “One-regular cubic graphs of order a small number times a prime or a prime square”, J. Aust. Math. Soc., 76 (2004), 345–356 | DOI | MR | Zbl

[11] Y. Q. Feng, J. H. Kwak, K. Wang, “Classifying cubic symmetric graphs of order $8p$ or $8p^{2}$”, European J. Combin., 26 (2005), 1033–1052 | DOI | MR | Zbl

[12] Y. Q. Feng, J. H. Kwak, M. Y. Xu, “Cubic $s$-regular graphs of order $2p^{3}$”, J. Graph Theory, 52 (2006), 341–352 | DOI | MR | Zbl

[13] D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982 | MR | Zbl

[14] P. Lorimer, “Vertex-transitive graphs: Symmetric graphs of prime valency”, J. Graph Theory, 8 (1984), 55–68 | DOI | MR | Zbl

[15] J. M. Oh, “A classification of cubic s-regular graphs of order $14p$”, Discrete Math., 309 (2009), 2721–2726 | DOI | MR | Zbl

[16] J. M. Oh, “A classification of cubic $s$-regular graphs of order $16p$”, Discrete Math., 309 (2009), 3150–3155 | DOI | MR | Zbl

[17] W. T. Tutte, “A family of cubical graphs”, Proc. Cambridge Philos. Soc., 43 (1947), 459–474 | DOI | MR | Zbl

[18] W. T. Tutte, “On the symmetry of cubic graphs”, Canad. J. Math., 11 (1959), 621–624 | DOI | MR | Zbl