A maximal $T$-space of $\mathbb{F}_{3}[x]_0$
Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 160-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

In earlier work, we have established that for any finite field $k$, the free associative $k$-algebra on one generator $x$, denoted by $k[x]_0$, has infinitely many maximal $T$-spaces, but exactly two maximal $T$-ideals (each of which is a maximal $T$-space). However, aside from these two $T$-ideals, no specific examples of maximal $T$-spaces of $k[x]_0$ were determined at that time. In a subsequent work, we proposed that for a finite field $k$ of characteristic $p>2$ and order $q$, for each positive integer $n$ which is a power of 2, the $T$-space $W_n$, generated by $\{x+x^{q^n}, x^{q^n+1}\}$, is maximal, and we proved that $W_1$ is maximal. In this note, we prove that for $q=p=3$, $W_2$ is maximal.
@article{ADM_2013_16_2_a1,
     author = {C. Bekh-Ochir and S. Rankin},
     title = {A maximal $T$-space of $\mathbb{F}_{3}[x]_0$},
     journal = {Algebra and discrete mathematics},
     pages = {160--170},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a1/}
}
TY  - JOUR
AU  - C. Bekh-Ochir
AU  - S. Rankin
TI  - A maximal $T$-space of $\mathbb{F}_{3}[x]_0$
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 160
EP  - 170
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a1/
LA  - en
ID  - ADM_2013_16_2_a1
ER  - 
%0 Journal Article
%A C. Bekh-Ochir
%A S. Rankin
%T A maximal $T$-space of $\mathbb{F}_{3}[x]_0$
%J Algebra and discrete mathematics
%D 2013
%P 160-170
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a1/
%G en
%F ADM_2013_16_2_a1
C. Bekh-Ochir; S. Rankin. A maximal $T$-space of $\mathbb{F}_{3}[x]_0$. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 160-170. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a1/

[1] C. Bekh-Ochir, S. A. Rankin, “Maximal $T$-spaces of a free associative algebra”, J. Algebra, 332 (2011), 442–456 | DOI | MR | Zbl

[2] C. Bekh-Ochir, S. A. Rankin, Maximal $T$-spaces of the free associative algebra over a finite field, arXiv: 1104.4755

[3] A. V. Grishin, “On the finite-basis property of systems of generalized polynomials”, Izv. Math. USSR, 37:2 (1991), 243–272 | DOI | MR | Zbl

[4] A. V. Grishin, “On the finite-basis property of abstract $T$-spaces”, Fund. Prikl. Mat., 1 (1995), 669–700 (Russian) | MR | Zbl

[5] W. A. Stein et al., Sage Mathematics Software (Version 4.6.1), , The Sage Development Team, 2011 http://www.sagemath.org