Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2013_16_2_a1, author = {C. Bekh-Ochir and S. Rankin}, title = {A maximal $T$-space of $\mathbb{F}_{3}[x]_0$}, journal = {Algebra and discrete mathematics}, pages = {160--170}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a1/} }
C. Bekh-Ochir; S. Rankin. A maximal $T$-space of $\mathbb{F}_{3}[x]_0$. Algebra and discrete mathematics, Tome 16 (2013) no. 2, pp. 160-170. http://geodesic.mathdoc.fr/item/ADM_2013_16_2_a1/
[1] C. Bekh-Ochir, S. A. Rankin, “Maximal $T$-spaces of a free associative algebra”, J. Algebra, 332 (2011), 442–456 | DOI | MR | Zbl
[2] C. Bekh-Ochir, S. A. Rankin, Maximal $T$-spaces of the free associative algebra over a finite field, arXiv: 1104.4755
[3] A. V. Grishin, “On the finite-basis property of systems of generalized polynomials”, Izv. Math. USSR, 37:2 (1991), 243–272 | DOI | MR | Zbl
[4] A. V. Grishin, “On the finite-basis property of abstract $T$-spaces”, Fund. Prikl. Mat., 1 (1995), 669–700 (Russian) | MR | Zbl
[5] W. A. Stein et al., Sage Mathematics Software (Version 4.6.1), , The Sage Development Team, 2011 http://www.sagemath.org