On Markov graphs
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 96-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate graph-theoretical properties of Markov graphs from dynamical systems.
Keywords: dynamics on graphs, Markov graph.
@article{ADM_2013_16_1_a9,
     author = {S. Kozerenko},
     title = {On {Markov} graphs},
     journal = {Algebra and discrete mathematics},
     pages = {96--102},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a9/}
}
TY  - JOUR
AU  - S. Kozerenko
TI  - On Markov graphs
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 96
EP  - 102
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a9/
LA  - en
ID  - ADM_2013_16_1_a9
ER  - 
%0 Journal Article
%A S. Kozerenko
%T On Markov graphs
%J Algebra and discrete mathematics
%D 2013
%P 96-102
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a9/
%G en
%F ADM_2013_16_1_a9
S. Kozerenko. On Markov graphs. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 96-102. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a9/

[1] A. N. Sharkovsky, A. G. Sivak, S. F. Kolyada, V. V. Fedorenko, Dynamics of one-dimensional maps, Kluwer Academic Publishers, 1997, 272 pp. | MR | Zbl

[2] A. N. Sharkovsky, “Co-existence of the cycles of a continuous mapping of the line onto itself”, Ukrain. Math. Zh., 16:1 (1964), 61–71 | MR

[3] C. Bernhardt, “Vertex maps for trees: algebra and periods of periodic orbits”, Discrete Contin. Dyn. Syst., 14:3, March (2006), 399–408 | DOI | MR | Zbl

[4] C. Bernhardt, “Zero-entropy vertex maps on graphs”, Journal of Difference Equations and Applications, 15:1 (2009), 17–22 | DOI | MR | Zbl

[5] C. Bernhardt, “A Sharkovsky theorem for vertex maps on trees”, Journal of Difference Equations and Applications, 17:1 (2011), 103–113 | DOI | MR | Zbl

[6] C. Bernhardt, “A simple construction of a faithful, irreducible representation of $S_{n}$”, J. Algebra Appl., 5 (2006), 125 | DOI | MR | Zbl

[7] Ll. Alseda, D. Juher, P. Mumbru, “Sets of periods for piecewise monotone tree maps”, International Journal of Bifurcation and Chaos, 13:2 (2003), 311–341 | DOI | MR | Zbl

[8] C-W. Ho, C. Morris, “A graph theoretic proof of Sharkovsky's theorem on the periodic points of continuous functions”, Pacific J. of Math., 96 (1981), 361–370 | DOI | MR | Zbl