Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2013_16_1_a9, author = {S. Kozerenko}, title = {On {Markov} graphs}, journal = {Algebra and discrete mathematics}, pages = {96--102}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a9/} }
S. Kozerenko. On Markov graphs. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 96-102. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a9/
[1] A. N. Sharkovsky, A. G. Sivak, S. F. Kolyada, V. V. Fedorenko, Dynamics of one-dimensional maps, Kluwer Academic Publishers, 1997, 272 pp. | MR | Zbl
[2] A. N. Sharkovsky, “Co-existence of the cycles of a continuous mapping of the line onto itself”, Ukrain. Math. Zh., 16:1 (1964), 61–71 | MR
[3] C. Bernhardt, “Vertex maps for trees: algebra and periods of periodic orbits”, Discrete Contin. Dyn. Syst., 14:3, March (2006), 399–408 | DOI | MR | Zbl
[4] C. Bernhardt, “Zero-entropy vertex maps on graphs”, Journal of Difference Equations and Applications, 15:1 (2009), 17–22 | DOI | MR | Zbl
[5] C. Bernhardt, “A Sharkovsky theorem for vertex maps on trees”, Journal of Difference Equations and Applications, 17:1 (2011), 103–113 | DOI | MR | Zbl
[6] C. Bernhardt, “A simple construction of a faithful, irreducible representation of $S_{n}$”, J. Algebra Appl., 5 (2006), 125 | DOI | MR | Zbl
[7] Ll. Alseda, D. Juher, P. Mumbru, “Sets of periods for piecewise monotone tree maps”, International Journal of Bifurcation and Chaos, 13:2 (2003), 311–341 | DOI | MR | Zbl
[8] C-W. Ho, C. Morris, “A graph theoretic proof of Sharkovsky's theorem on the periodic points of continuous functions”, Pacific J. of Math., 96 (1981), 361–370 | DOI | MR | Zbl