Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 81-95
Voir la notice de l'article provenant de la source Math-Net.Ru
This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category $R$-Mod are described. Using the results of [1], in this part the other classes of closure operators $C$ are characterized by the associated functions $\mathcal{F}_1^{C}$ and $\mathcal{F}_2^{C}$ which separate in every module $M \in R$-Mod the sets of $C$-dense submodules and $C$-closed submodules. This method is applied to the classes of hereditary, maximal, minimal and cohereditary closure operators.
Keywords:
ring, preradical, closure operator, dense submodule, closed submodule, hereditary (cohereditary) closure operator.
Mots-clés : module
Mots-clés : module
@article{ADM_2013_16_1_a8,
author = {A. I. Kashu},
title = {Closure operators in the categories of modules. {Part} {II} {(Hereditary} and cohereditary operators)},
journal = {Algebra and discrete mathematics},
pages = {81--95},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a8/}
}
TY - JOUR AU - A. I. Kashu TI - Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) JO - Algebra and discrete mathematics PY - 2013 SP - 81 EP - 95 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a8/ LA - en ID - ADM_2013_16_1_a8 ER -
A. I. Kashu. Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators). Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 81-95. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a8/