Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 81-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category $R$-Mod are described. Using the results of [1], in this part the other classes of closure operators $C$ are characterized by the associated functions $\mathcal{F}_1^{C}$ and $\mathcal{F}_2^{C}$ which separate in every module $M \in R$-Mod the sets of $C$-dense submodules and $C$-closed submodules. This method is applied to the classes of hereditary, maximal, minimal and cohereditary closure operators.
Keywords: ring, preradical, closure operator, dense submodule, closed submodule, hereditary (cohereditary) closure operator.
Mots-clés : module
@article{ADM_2013_16_1_a8,
     author = {A. I. Kashu},
     title = {Closure operators in the categories of modules. {Part} {II} {(Hereditary} and cohereditary operators)},
     journal = {Algebra and discrete mathematics},
     pages = {81--95},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a8/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 81
EP  - 95
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a8/
LA  - en
ID  - ADM_2013_16_1_a8
ER  - 
%0 Journal Article
%A A. I. Kashu
%T Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
%J Algebra and discrete mathematics
%D 2013
%P 81-95
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a8/
%G en
%F ADM_2013_16_1_a8
A. I. Kashu. Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators). Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 81-95. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a8/

[1] A. I. Kashu, “Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)”, Algebra and Discrete Mathematics, 15:2 (2013), 213–228 | MR

[2] D. Dikranjan, E. Giuli, “Factorizations, injectivity and compactness in categories of modules”, Commun. in Algebra, 19:1 (1991), 45–83 | DOI | MR | Zbl

[3] D. Dikranjan, E. Giuli, “Closure operators, I”, Topology and its Applications, 27 (1987), 129–143 | DOI | MR | Zbl

[4] D. Dikranjan, E. Giuli, W. Tholen, Proc. Intern. Conf. on Categorical Topology (Prague, 1988), World Scientific Publ., Singapore, 1989 | MR

[5] A. I. Kashu, Radicals and torsions in modules, Ştiinţa, Kishinev, 1983 (in Russian) | MR

[6] A. I. Kashu, “Radical closures in categories of modules”, Matem. issled. (Kishinev), 5:4(18) (1970), 91–104 (in Russian) | MR | Zbl

[7] L. Bican, T. Kepka, P. Nemec, Rings, modules and preradicals, Marcel Dekker, New York, 1982 | MR | Zbl

[8] J. S. Golan, Torsion theories, Longman Scientific and Technical, New York, 1976 | MR

[9] B. Stenström, Rings of quotients, Springer Verlag, 1975 | MR | Zbl