On the structure of skew groupoid rings which are Azumaya
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 71-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present an intrinsic description of the structure of an Azumaya skew groupoid ring, having its center contained in the respective ground ring, in terms of suitable central Galois algebras and commutative Galois extensions.
Keywords: skew groupoid ring, Azumaya ring
Mots-clés : groupoid action, Galois algebra.
@article{ADM_2013_16_1_a7,
     author = {Daiana Fl\^ores and Antonio Paques},
     title = {On the structure of skew groupoid rings which are {Azumaya}},
     journal = {Algebra and discrete mathematics},
     pages = {71--80},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a7/}
}
TY  - JOUR
AU  - Daiana Flôres
AU  - Antonio Paques
TI  - On the structure of skew groupoid rings which are Azumaya
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 71
EP  - 80
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a7/
LA  - en
ID  - ADM_2013_16_1_a7
ER  - 
%0 Journal Article
%A Daiana Flôres
%A Antonio Paques
%T On the structure of skew groupoid rings which are Azumaya
%J Algebra and discrete mathematics
%D 2013
%P 71-80
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a7/
%G en
%F ADM_2013_16_1_a7
Daiana Flôres; Antonio Paques. On the structure of skew groupoid rings which are Azumaya. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 71-80. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a7/

[1] R. Alfaro, G. Szeto, “Skew group rings which are Azumaya”, Comm. Algebra, 23 (1995), 2255–2261 | DOI | MR | Zbl

[2] D. Bagio, D. Flôres, A. Paques, “Partial actions of ordered groupoids on rings”, J. Algebra Appl., 9 (2010), 501–517 | DOI | MR | Zbl

[3] D. Bagio, A. Paques, “Partial groupoid actions: globalization, Morita theory and Galois theory”, Comm. Algebra, 40 (2012), 3658–3678 | DOI | MR | Zbl

[4] S. Caenepeel, E. De Groot, “Galois theory for weak Hopf algebras”, Rev. Roumaine Math. Pures Appl., 52 (2007), 151–176 | MR | Zbl

[5] M. Dokuchaev, R. Exel, “Associativity of crossed products by partial actions, enveloping actions and partial representations”, Trans. AMS, 357 (2005), 1931–1952 | DOI | MR | Zbl

[6] F. DeMeyer, E. Ingraham, Separable Algebras over Commutative Rings, LNM, 181, Springer Verlag, Berlin, 1971 | MR

[7] D. Flôres, A. Paques, “Duality for groupoid (co)actions”, Comm. Algebra, 2013 (to appear) | MR

[8] N. D. Gilbert, “Actions and expansions of ordered groupoids”, J. Pure Appl. Algebra, 198 (2005), 175–195 | DOI | MR | Zbl

[9] M. Harada, “Suplementary results on Galois extensions”, Osaka J. Math., 2 (1965), 287–295 | MR

[10] K. Hirata, “Some types of separable extensions of rings”, Nagoya Math. J., 33 (1968), 107–115 | MR | Zbl

[11] K. Hirata, K. Sugano, “On semisimple extensions and separable extensions over noncommutative rings”, J. Math. Soc. Japan, 18 (1966), 360–373 | DOI | MR | Zbl

[12] S. Ikehata, “Note on Azumaya algebras and $H$-separable extensions”, Math. J. Okayama Univ., 23 (1981), 17–18 | MR | Zbl

[13] M. V. Lawson, Inverse Semigroups. The Theory of Partial Symmetries, World Scientific Pub. Co, London, 1998 | MR

[14] K. Sugano, “Note on semisimple extensions and separable extensions”, Osaka J. Math., 4 (1967), 265–270 | MR | Zbl

[15] G. Szeto, L. Xue, “The structure of Galois Algebras”, J. Algebra, 237 (2001), 238–246 | DOI | MR | Zbl