Labelling matrices and index matrices of a graph structure
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 42-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol. 3, No. 2, Dec 2006, 65-123. Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J. Combin. Theory, Ser. B30 (1981), 290-301) proved that the collection of all admissible index vectors and the collection of all labellings for $0$ form free $F$-modules ($F$ is a commutative ring). We have obtained similar results on graph structures in a previous paper. In the present paper, we introduce labelling matrices and index matrices of graph structures and prove that the collection of all admissible index matrices and the collection of all labelling matrices for $0$ form free $F$-modules. We also find their ranks in various cases of bipartition and char $F$ (equal to 2 and not equal to 2).
Keywords: Graph structure, $R_{i}$-labelling, $R_{i}$-index vector, admissible $R_{i}$-index vector, labelling matrix
Mots-clés : index matrix, admissible index matrix.
@article{ADM_2013_16_1_a5,
     author = {T. Dinesh and T. V. Ramakrishnan},
     title = {Labelling matrices and index matrices of a graph structure},
     journal = {Algebra and discrete mathematics},
     pages = {42--60},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a5/}
}
TY  - JOUR
AU  - T. Dinesh
AU  - T. V. Ramakrishnan
TI  - Labelling matrices and index matrices of a graph structure
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 42
EP  - 60
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a5/
LA  - en
ID  - ADM_2013_16_1_a5
ER  - 
%0 Journal Article
%A T. Dinesh
%A T. V. Ramakrishnan
%T Labelling matrices and index matrices of a graph structure
%J Algebra and discrete mathematics
%D 2013
%P 42-60
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a5/
%G en
%F ADM_2013_16_1_a5
T. Dinesh; T. V. Ramakrishnan. Labelling matrices and index matrices of a graph structure. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 42-60. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a5/

[1] A. E. Brouwer, A note on magic graphs, Report ZN 47/72, Internal communication, Mathematisch Centrum, Amsterdam, 1972

[2] D. Cartwright, F. Harary, “Structural balance: a generalization of Heider's theory”, Psychological Review, 63 (1956), 277–293 | DOI

[3] T. Dinesh, T. V. Ramakrishnan, “$R_{i}$-labellings and $R_{i}$-index vectors of a graph structure”, Adv. Appl. Discrete Math., 7:1 (2011), 63–82 | MR | Zbl

[4] M. Doob, “Generalizations of magic graphs”, J. Combin. Theory Ser. B, 17 (1974), 205-217 | DOI | MR | Zbl

[5] L. Euler, “Solutio problematis ad geometriam situs pertinentis”, Comment. Academiae Sci. I. Petropolitanae, 8 (1736), 128–140

[6] S. Florini, R. J. Wilson, Edge-colourings of graphs, Research Notes in Mathematics, 16, Pitman, London, 1977 | MR

[7] F. Harary, Graph Theory, Narosa Pub. House, 1995

[8] R. H. Jeurissen, “The incidence matrix and labelings of a graph”, J. Combin. Theory Ser. B, 30 (1981), 290–301 | DOI | MR | Zbl

[9] E. Sampathkumar, “Generalised graph structures”, Bull. Kerala Math. Assoc., 3:2 (2006), 65–123 | MR

[10] B. M. Stewart, “Magic graphs”, Canad. J. Math., 18 (1966), 1031–1059 | DOI | MR | Zbl

[11] T. Zaslavsky, “Characterizations of signed graphs”, J. Graph Theory, 5 (1981), 401–406 | DOI | MR | Zbl

[12] T. Zaslavsky, “Signed graphs”, Discrete Appl. Math., 4:1 (1982), 47–74 | DOI | MR | Zbl