Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2013_16_1_a3, author = {P. Brumatti and M. Veloso}, title = {On locally nilpotent derivations of {Fermat} rings}, journal = {Algebra and discrete mathematics}, pages = {20--32}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a3/} }
P. Brumatti; M. Veloso. On locally nilpotent derivations of Fermat rings. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 20-32. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a3/
[1] D. Daigle, “Locally nilpotent derivations”, Lecture notes for the Setember School of algebraic geometry (Lukȩcin, Poland, Setember 2003) http://aix1.uottawa.ca/d̃daigle
[2] M. Ferreiro, Y. Lequain, A. Nowicki, “A note on locally nilpotent derivations”, J. Pure Appl. Algebra, 79 (1992), 45–50 | DOI | MR
[3] D. Fiston, S. Maubach, “Constructing (almost) rigid rings and a UFD having infinitely generated Derksen and Makar-Limanov invariant”, Canad. Math. Bull., 53:1 (2010), 77–86 | DOI | MR
[4] G. Freudenberg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences, 136, Springer-Verlag, Berlin–Heidelberg, 2006 | MR
[5] L. Makar-Limanov, “On the group of automorphisms of a surface $x^ny=P(z)$”, Israel J. Math., 121 (2001), 113–123 | DOI | MR | Zbl