Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2013_16_1_a12, author = {E. D. Schwab}, title = {Inverse semigroups generated by group congruences. {The} {M\"{o}bius} functions}, journal = {Algebra and discrete mathematics}, pages = {116--126}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a12/} }
E. D. Schwab. Inverse semigroups generated by group congruences. The M\"{o}bius functions. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 116-126. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a12/
[1] M. Content, F. Lemay, P. Leroux, “Catégories de Möbius et fonctorialités: un cadre général pour l'inversion de Möbius”, J. Comb. Theory Ser. A, 25 (1980), 169–190 | DOI | MR
[2] E. R. Dombi, N. D. Gilbert, “The tilling semigroups of one-dimensional periodic tilings”, J. Aust. Math. Soc., 87 (2009), 153–160 | DOI | MR | Zbl
[3] T. M. Fiore, W. Lück, R. Sauer, “Finiteness obstructions and Euler characteristic of categories”, Adv. Math., 226 (2011), 2371–2469 | DOI | MR | Zbl
[4] J. Haigh, “On the Möbius algebra and the Grothendick ring of a finite category”, J. London Math. Soc., 1980, 81–92 | DOI | MR | Zbl
[5] M. V. Lawson, Inverse semigroups: the theory of partial symmetries, World Scientific, Singapore, 1998 | MR
[6] M. V. Lawson, “The structure of 0-E-unitary inverse semigroups: the monoid case”, Proc. Edinburgh Math. Soc., 42 (1999), 497–520 | DOI | MR | Zbl
[7] M. V. Lawson, “$E^{*}$-unitary inverse semigroups”, Algorithms, automata and languages, eds. J. E. Pin, P. V. Silva, World Scientific Publishing, 2002, 195–214 | DOI | MR | Zbl
[8] M. V. Lawson, “One-dimensional tiling semigroups”, Semigroup Forum, 68 (2004), 159–176 | DOI | MR | Zbl
[9] F. W. Lawvere, M. Menni, “The Hopf algebra of Möbius intervals”, Theory and Appl. of Categories, 24:10 (2010), 221–265 | MR | Zbl
[10] J. Leech, “Constructing inverse monoids from small categories”, Semigroup Forum, 36 (1987), 89–116 | DOI | MR | Zbl
[11] T. Leinster, “The Euler characteristic of a category”, Doc. Math., 13 (2008), 21–49 | MR | Zbl
[12] T. Leinster, Notions of Möbius inversion, 9 Jan. 2012, arXiv: 1201.0413v2 | MR
[13] D. B. McAlister, F. Soares de Almeida, “One-dimensional tiling semigroups and factorial languages”, Comm. Algebra, 37 (2009), 276–295 | DOI | MR | Zbl
[14] K. Noguchi, “The Euler characteristic of acyclic categories”, Kyushu J. Math., 65 (2011), 85–99 | DOI | MR | Zbl
[15] M. Petrich, Inverse semigroups, John Wiley Sons, New York, 1984 | MR | Zbl
[16] G. C. Rota, “On the foundations of combinatorial theory. Theory of Möbius functions”, Z. Wahrscheinlichkeitstheorie, 2 (1964), 340–368 | DOI | MR | Zbl
[17] H. E. Scheiblich, “A characterizations of a free elementary inverse semigroup”, Semigroup Forum, 2 (1974), 76–79 | DOI | MR
[18] E. D. Schwab, “Möbius categories as reduced standard division categories of combinatorial inverse monoids”, Semigroup Forum, 69 (2004), 30–40 | DOI | MR | Zbl
[19] E. D. Schwab, “The Möbius category of some combinatorial inverse semigroups”, Semigroup Forum, 69 (2004), 41–50 | DOI | MR | Zbl
[20] E. D. Schwab, “The Möbius category of a combinatorial inverse monoid with zero”, Ann. Sci. Math. Québec, 33 (2009), 93–113 | MR | Zbl
[21] E. D. Schwab, “Lawvere intervals and the Möbius function of a Möbius category”, Discrete Math. Appl., 22 (2012), 545–554 | DOI | MR | Zbl
[22] B. Steinberg, “Möbius functions and semigroup representation theory”, J. Comb. Theory Ser. A, 113 (2006), 866–881 | DOI | MR | Zbl
[23] B. Steinberg, “Möbius functions and semigroup representation theory. II: Character formulas and multiplicities”, Adv. in Math., 217 (2008), 1521–1557 | DOI | MR | Zbl