Inverse semigroups generated by group congruences. The M\"{o}bius functions
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 116-126

Voir la notice de l'article provenant de la source Math-Net.Ru

The computation of the Möbius function of a Möbius category that arises from a combinatorial inverse semigroup has a distinctive feature. This computation is done on the field of finite posets. In the case of two combinatorial inverse semigroups, order isomorphisms between corresponding finite posets reduce the computation to one of the semigroups. Starting with a combinatorial inverse monoid and using a group congruence we construct a combinatorial inverse semigroup such that the Möbius function becomes an invariant to this construction. For illustration, we consider the multiplicative analogue of the bicyclic semigroup and the free monogenic inverse monoid.
Keywords: combinatorial inverse semigroup, Möbius function, Möbius category.
Mots-clés : group congruence
@article{ADM_2013_16_1_a12,
     author = {E. D. Schwab},
     title = {Inverse semigroups generated by group congruences. {The} {M\"{o}bius} functions},
     journal = {Algebra and discrete mathematics},
     pages = {116--126},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a12/}
}
TY  - JOUR
AU  - E. D. Schwab
TI  - Inverse semigroups generated by group congruences. The M\"{o}bius functions
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 116
EP  - 126
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a12/
LA  - en
ID  - ADM_2013_16_1_a12
ER  - 
%0 Journal Article
%A E. D. Schwab
%T Inverse semigroups generated by group congruences. The M\"{o}bius functions
%J Algebra and discrete mathematics
%D 2013
%P 116-126
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a12/
%G en
%F ADM_2013_16_1_a12
E. D. Schwab. Inverse semigroups generated by group congruences. The M\"{o}bius functions. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 116-126. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a12/