Inverse semigroups generated by group congruences. The M\"{o}bius functions
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 116-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The computation of the Möbius function of a Möbius category that arises from a combinatorial inverse semigroup has a distinctive feature. This computation is done on the field of finite posets. In the case of two combinatorial inverse semigroups, order isomorphisms between corresponding finite posets reduce the computation to one of the semigroups. Starting with a combinatorial inverse monoid and using a group congruence we construct a combinatorial inverse semigroup such that the Möbius function becomes an invariant to this construction. For illustration, we consider the multiplicative analogue of the bicyclic semigroup and the free monogenic inverse monoid.
Keywords: combinatorial inverse semigroup, Möbius function, Möbius category.
Mots-clés : group congruence
@article{ADM_2013_16_1_a12,
     author = {E. D. Schwab},
     title = {Inverse semigroups generated by group congruences. {The} {M\"{o}bius} functions},
     journal = {Algebra and discrete mathematics},
     pages = {116--126},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a12/}
}
TY  - JOUR
AU  - E. D. Schwab
TI  - Inverse semigroups generated by group congruences. The M\"{o}bius functions
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 116
EP  - 126
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a12/
LA  - en
ID  - ADM_2013_16_1_a12
ER  - 
%0 Journal Article
%A E. D. Schwab
%T Inverse semigroups generated by group congruences. The M\"{o}bius functions
%J Algebra and discrete mathematics
%D 2013
%P 116-126
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a12/
%G en
%F ADM_2013_16_1_a12
E. D. Schwab. Inverse semigroups generated by group congruences. The M\"{o}bius functions. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 116-126. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a12/

[1] M. Content, F. Lemay, P. Leroux, “Catégories de Möbius et fonctorialités: un cadre général pour l'inversion de Möbius”, J. Comb. Theory Ser. A, 25 (1980), 169–190 | DOI | MR

[2] E. R. Dombi, N. D. Gilbert, “The tilling semigroups of one-dimensional periodic tilings”, J. Aust. Math. Soc., 87 (2009), 153–160 | DOI | MR | Zbl

[3] T. M. Fiore, W. Lück, R. Sauer, “Finiteness obstructions and Euler characteristic of categories”, Adv. Math., 226 (2011), 2371–2469 | DOI | MR | Zbl

[4] J. Haigh, “On the Möbius algebra and the Grothendick ring of a finite category”, J. London Math. Soc., 1980, 81–92 | DOI | MR | Zbl

[5] M. V. Lawson, Inverse semigroups: the theory of partial symmetries, World Scientific, Singapore, 1998 | MR

[6] M. V. Lawson, “The structure of 0-E-unitary inverse semigroups: the monoid case”, Proc. Edinburgh Math. Soc., 42 (1999), 497–520 | DOI | MR | Zbl

[7] M. V. Lawson, “$E^{*}$-unitary inverse semigroups”, Algorithms, automata and languages, eds. J. E. Pin, P. V. Silva, World Scientific Publishing, 2002, 195–214 | DOI | MR | Zbl

[8] M. V. Lawson, “One-dimensional tiling semigroups”, Semigroup Forum, 68 (2004), 159–176 | DOI | MR | Zbl

[9] F. W. Lawvere, M. Menni, “The Hopf algebra of Möbius intervals”, Theory and Appl. of Categories, 24:10 (2010), 221–265 | MR | Zbl

[10] J. Leech, “Constructing inverse monoids from small categories”, Semigroup Forum, 36 (1987), 89–116 | DOI | MR | Zbl

[11] T. Leinster, “The Euler characteristic of a category”, Doc. Math., 13 (2008), 21–49 | MR | Zbl

[12] T. Leinster, Notions of Möbius inversion, 9 Jan. 2012, arXiv: 1201.0413v2 | MR

[13] D. B. McAlister, F. Soares de Almeida, “One-dimensional tiling semigroups and factorial languages”, Comm. Algebra, 37 (2009), 276–295 | DOI | MR | Zbl

[14] K. Noguchi, “The Euler characteristic of acyclic categories”, Kyushu J. Math., 65 (2011), 85–99 | DOI | MR | Zbl

[15] M. Petrich, Inverse semigroups, John Wiley Sons, New York, 1984 | MR | Zbl

[16] G. C. Rota, “On the foundations of combinatorial theory. Theory of Möbius functions”, Z. Wahrscheinlichkeitstheorie, 2 (1964), 340–368 | DOI | MR | Zbl

[17] H. E. Scheiblich, “A characterizations of a free elementary inverse semigroup”, Semigroup Forum, 2 (1974), 76–79 | DOI | MR

[18] E. D. Schwab, “Möbius categories as reduced standard division categories of combinatorial inverse monoids”, Semigroup Forum, 69 (2004), 30–40 | DOI | MR | Zbl

[19] E. D. Schwab, “The Möbius category of some combinatorial inverse semigroups”, Semigroup Forum, 69 (2004), 41–50 | DOI | MR | Zbl

[20] E. D. Schwab, “The Möbius category of a combinatorial inverse monoid with zero”, Ann. Sci. Math. Québec, 33 (2009), 93–113 | MR | Zbl

[21] E. D. Schwab, “Lawvere intervals and the Möbius function of a Möbius category”, Discrete Math. Appl., 22 (2012), 545–554 | DOI | MR | Zbl

[22] B. Steinberg, “Möbius functions and semigroup representation theory”, J. Comb. Theory Ser. A, 113 (2006), 866–881 | DOI | MR | Zbl

[23] B. Steinberg, “Möbius functions and semigroup representation theory. II: Character formulas and multiplicities”, Adv. in Math., 217 (2008), 1521–1557 | DOI | MR | Zbl