Ideals in $(\mathcal{Z}^{+},\leq_{D})$
Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 107-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

A convolution is a mapping $\mathcal{C}$ of the set $\mathcal{Z}^{+}$ of positive integers into the set $\mathcal{P}(\mathcal{Z}^{+})$ of all subsets of $\mathcal{Z}^{+}$ such that every member of $\mathcal{C}(n)$ is a divisor of $n$. If for any $n$, $D(n)$ is the set of all positive divisors of $n$, then $D$ is called the Dirichlet's convolution. It is well known that $\mathcal{Z}^{+}$ has the structure of a distributive lattice with respect to the division order. Corresponding to any general convolution $\mathcal{C}$, one can define a binary relation $\leq_{\mathcal{C}}$ on $\mathcal{Z}^{+}$ by ` $m\leq_{\mathcal{C}}n $ if and only if $ m\in \mathcal{C}(n)$'. A general convolution may not induce a lattice on $\mathcal{Z^{+}}$. However most of the convolutions induce a meet semi lattice structure on $\mathcal{Z^{+}}$.In this paper we consider a general meet semi lattice and study it's ideals and extend these to $(\mathcal{Z}^{+},\leq_{D})$, where $D$ is the Dirichlet's convolution.
Keywords: Partial Order, Lattice, Semi Lattice, Ideal.
Mots-clés : Convolution
@article{ADM_2013_16_1_a11,
     author = {Sankar Sagi},
     title = {Ideals in $(\mathcal{Z}^{+},\leq_{D})$},
     journal = {Algebra and discrete mathematics},
     pages = {107--115},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a11/}
}
TY  - JOUR
AU  - Sankar Sagi
TI  - Ideals in $(\mathcal{Z}^{+},\leq_{D})$
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 107
EP  - 115
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a11/
LA  - en
ID  - ADM_2013_16_1_a11
ER  - 
%0 Journal Article
%A Sankar Sagi
%T Ideals in $(\mathcal{Z}^{+},\leq_{D})$
%J Algebra and discrete mathematics
%D 2013
%P 107-115
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a11/
%G en
%F ADM_2013_16_1_a11
Sankar Sagi. Ideals in $(\mathcal{Z}^{+},\leq_{D})$. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 107-115. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a11/

[1] G. Birkhoff, Lattice Theory, American Mathematical Society, 1967 | MR

[2] E. Cohen, “Arithmetical functions associated with the unitary divisors of an integer”, Math. Z., 74 (1960), 66–80 | DOI | MR | Zbl

[3] B. A. Davey, H. A. Priestly, Introduction to lattices and order, Cambridge University Press, 2002 | MR | Zbl

[4] G. A. Gratzer, General Lattice Theory, Birkhauser, 1971

[5] W. Narkiewicz, “On a class of arithmetical convolutions”, Colloq. Math., 10 (1963), 81–94 | MR | Zbl

[6] Sagi Sankar, Lattice Theory of Convolutions, Ph. D. Thesis, Andhra University, Waltair, Visakhapatnam, India, 2010

[7] U. M. Swamy, G. C. Rao, V. Sita Ramaiah, “On a conjecture in a ring of arithmetic functions”, Indian J. Pure Appl. Math., 14:12 (1983), 1519–1530 | MR | Zbl

[8] U. M. Swamy, Sagi Sankar, “Partial Orders induced by Convolutions”, International Journal of Mathematics and Soft Computing, 2:1 (2011)

[9] U. M. Swamy, Sagi Sankar, “Lattice Structures on $\mathcal{Z}^{+}$ induced by convolutions”, Eur. J. Pure Appl. Math., 4:4 (2011), 424–434 | MR