Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2013_16_1_a11, author = {Sankar Sagi}, title = {Ideals in $(\mathcal{Z}^{+},\leq_{D})$}, journal = {Algebra and discrete mathematics}, pages = {107--115}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a11/} }
Sankar Sagi. Ideals in $(\mathcal{Z}^{+},\leq_{D})$. Algebra and discrete mathematics, Tome 16 (2013) no. 1, pp. 107-115. http://geodesic.mathdoc.fr/item/ADM_2013_16_1_a11/
[1] G. Birkhoff, Lattice Theory, American Mathematical Society, 1967 | MR
[2] E. Cohen, “Arithmetical functions associated with the unitary divisors of an integer”, Math. Z., 74 (1960), 66–80 | DOI | MR | Zbl
[3] B. A. Davey, H. A. Priestly, Introduction to lattices and order, Cambridge University Press, 2002 | MR | Zbl
[4] G. A. Gratzer, General Lattice Theory, Birkhauser, 1971
[5] W. Narkiewicz, “On a class of arithmetical convolutions”, Colloq. Math., 10 (1963), 81–94 | MR | Zbl
[6] Sagi Sankar, Lattice Theory of Convolutions, Ph. D. Thesis, Andhra University, Waltair, Visakhapatnam, India, 2010
[7] U. M. Swamy, G. C. Rao, V. Sita Ramaiah, “On a conjecture in a ring of arithmetic functions”, Indian J. Pure Appl. Math., 14:12 (1983), 1519–1530 | MR | Zbl
[8] U. M. Swamy, Sagi Sankar, “Partial Orders induced by Convolutions”, International Journal of Mathematics and Soft Computing, 2:1 (2011)
[9] U. M. Swamy, Sagi Sankar, “Lattice Structures on $\mathcal{Z}^{+}$ induced by convolutions”, Eur. J. Pure Appl. Math., 4:4 (2011), 424–434 | MR