The $p$-gen nature of $M_0(V)$ (I)
Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 237-268
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $ V $ be a finite group (not elementary two) and $ p\geq 5 $ a prime. The question as to when the nearring $ M_0(V) $ of all zero–fixing self-maps on $ V $ is generated by a unit of order $ p $ is difficult. In this paper we show $ M_0(V) $ is so generated if and only if $ V $ does not belong to one of three finite disjoint families $ {\mathcal D}^\#(1,p) $ (=$ {\mathcal D}(1,p)\cup\{\{0\}\}) $, $ {\mathcal D}(2,p) $ and $ {\mathcal D}(3,p) $ of groups, where $ {\mathcal D}(n,p) $ are those groups $ G $ (not elementary two) with $ |G|\leq np $ and $ \delta(G)>(n-1)p $ (see [1] or §.1 for the definition of $\delta(G) $).
Keywords:
nearring, unit, fixed-point-free
Mots-clés : cycles ($p$-cycles), $p$-gen.
Mots-clés : cycles ($p$-cycles), $p$-gen.
@article{ADM_2013_15_2_a8,
author = {S. D. Scott},
title = {The $p$-gen nature of $M_0(V)$ {(I)}},
journal = {Algebra and discrete mathematics},
pages = {237--268},
year = {2013},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a8/}
}
S. D. Scott. The $p$-gen nature of $M_0(V)$ (I). Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 237-268. http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a8/
[1] T. C. Burness, S. D. Scott, “On the Number of Prime Order Subgroups of Finite Groups”, J. Austr. Math. Soc., 87 (2009), 329–357 | DOI | MR | Zbl
[2] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968 | MR | Zbl
[3] G. Pilz, Near-rings, North–Holland Pub., Amsterdam, 1983 | MR | Zbl
[4] S. D. Scott, “Involution Near-rings”, Proc. Edin. Math. Soc., 22 (1979), 241–245 | DOI | MR | Zbl
[5] S. D. Scott, “Transformation Near-rings Generated by a Unit of Order Three”, Alg. Col., 4:4 (1997), 371–392 | MR | Zbl
[6] C. T. C. Wall, “On Groups Consisting Mostly of Involutions”, Proc. Camb. Phil. Soc., 67 (1970), 251–262 | DOI | MR | Zbl