The $p$-gen nature of $M_0(V)$ (I)
Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 237-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $ V $ be a finite group (not elementary two) and $ p\geq 5 $ a prime. The question as to when the nearring $ M_0(V) $ of all zero–fixing self-maps on $ V $ is generated by a unit of order $ p $ is difficult. In this paper we show $ M_0(V) $ is so generated if and only if $ V $ does not belong to one of three finite disjoint families $ {\mathcal D}^\#(1,p) $ (=$ {\mathcal D}(1,p)\cup\{\{0\}\}) $, $ {\mathcal D}(2,p) $ and $ {\mathcal D}(3,p) $ of groups, where $ {\mathcal D}(n,p) $ are those groups $ G $ (not elementary two) with $ |G|\leq np $ and $ \delta(G)>(n-1)p $ (see [1] or §.1 for the definition of $\delta(G) $).
Keywords: nearring, unit, fixed-point-free
Mots-clés : cycles ($p$-cycles), $p$-gen.
@article{ADM_2013_15_2_a8,
     author = {S. D. Scott},
     title = {The $p$-gen nature of $M_0(V)$ {(I)}},
     journal = {Algebra and discrete mathematics},
     pages = {237--268},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a8/}
}
TY  - JOUR
AU  - S. D. Scott
TI  - The $p$-gen nature of $M_0(V)$ (I)
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 237
EP  - 268
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a8/
LA  - en
ID  - ADM_2013_15_2_a8
ER  - 
%0 Journal Article
%A S. D. Scott
%T The $p$-gen nature of $M_0(V)$ (I)
%J Algebra and discrete mathematics
%D 2013
%P 237-268
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a8/
%G en
%F ADM_2013_15_2_a8
S. D. Scott. The $p$-gen nature of $M_0(V)$ (I). Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 237-268. http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a8/

[1] T. C. Burness, S. D. Scott, “On the Number of Prime Order Subgroups of Finite Groups”, J. Austr. Math. Soc., 87 (2009), 329–357 | DOI | MR | Zbl

[2] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968 | MR | Zbl

[3] G. Pilz, Near-rings, North–Holland Pub., Amsterdam, 1983 | MR | Zbl

[4] S. D. Scott, “Involution Near-rings”, Proc. Edin. Math. Soc., 22 (1979), 241–245 | DOI | MR | Zbl

[5] S. D. Scott, “Transformation Near-rings Generated by a Unit of Order Three”, Alg. Col., 4:4 (1997), 371–392 | MR | Zbl

[6] C. T. C. Wall, “On Groups Consisting Mostly of Involutions”, Proc. Camb. Phil. Soc., 67 (1970), 251–262 | DOI | MR | Zbl