Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)
Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 213-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the closure operators of a category of modules $R$-Mod are studied. Every closure operator $C$ of $R$-Mod defines two functions $\mathcal{F}_1^{C}$ and $\mathcal{F}_2^{C}$, which in every module $M$ distinguish the set of $C$-dense submodules $\mathcal{F}_1^{C}(M)$ and the set of $C$-closed submodules $\mathcal{F}_2^{C}(M)$. By means of these functions three types of closure operators are described: 1) weakly hereditary; 2) idempotent; 3) weakly hereditary and idempotent.
Keywords: ring, lattice, preradical, closure operator, lattice of submodules, dense submodule, closed submodule.
Mots-clés : module
@article{ADM_2013_15_2_a6,
     author = {A. I. Kashu},
     title = {Closure operators in the categories of modules. {Part} {I} {(Weakly} hereditary and idempotent operators)},
     journal = {Algebra and discrete mathematics},
     pages = {213--228},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a6/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 213
EP  - 228
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a6/
LA  - en
ID  - ADM_2013_15_2_a6
ER  - 
%0 Journal Article
%A A. I. Kashu
%T Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)
%J Algebra and discrete mathematics
%D 2013
%P 213-228
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a6/
%G en
%F ADM_2013_15_2_a6
A. I. Kashu. Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators). Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 213-228. http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a6/

[1] L. Bican, T. Kepka, P. Nemec, Rings, modules and preradicals, Marcel Dekker, New York, 1982 | MR | Zbl

[2] A. P. Mišina, L. A. Skornjakov, Abelian groups and modules, A.M.S. Translations, series 2, 107, A.M.S., Providence, 1976 | Zbl

[3] B. Stenström, Rings of quotients, Springer Verlag, 1975 | MR | Zbl

[4] J. S. Golan, Torsion theories, Longman Scientific and Technical, New York, 1976 | MR

[5] A. I. Kashu, Radicals and torsions in modules, Ştiinţa, Kishinev, 1983 (in Russian) | MR

[6] A. I. Kashu, “Radical closures in categories of modules”, Matem. issled. (Kishinev), 5:4(18) (1970), 91–104 (in Russian) | MR | Zbl

[7] A. I. Kashu, “On some characterizations of torsions and stable radicals of modules”, Matem. issled. (Kishinev), 8:2(28) (1973), 176–182 (in Russian) | MR

[8] D. Dikranjan, E. Giuli, “Factorizations, injectivity and compactness in categories of modules”, Commun. in Algebra, 19:1 (1991), 45–83 | DOI | MR | Zbl

[9] D. Dikranjan, E. Giuli, “Closure operators, I”, Topology and its Applications, 27 (1987), 129–143 | DOI | MR | Zbl

[10] D. Dikranjan, E. Giuli, W. Tholen, Proc. Intern. Conf. on Categorical Topology (Prague, 1988), World Scientific Publ., Singapore, 1989 | MR