Weighted zero-sum problems over $C_3^r$
Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 201-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C_n$ be the cyclic group of order $n$ and set $s_{A}(C_n^r)$ as the smallest integer $\ell$ such that every sequence $\mathcal{S}$ in $C_n^r$ of length at least $\ell$ has an $A$-zero-sum subsequence of length equal to $\exp(C_n^r)$, for $A=\{-1,1\}$. In this paper, among other things, we give estimates for $s_A(C_3^r)$, and prove that $s_A(C_{3}^{3})=9$, $s_A(C_{3}^{4})=21$ and $41\leq s_A(C_{3}^{5})\leq45$.
Keywords: Weighted zero-sum, abelian groups.
@article{ADM_2013_15_2_a5,
     author = {H. Godinho and A. Lemos and D. Marques},
     title = {Weighted zero-sum problems over $C_3^r$},
     journal = {Algebra and discrete mathematics},
     pages = {201--212},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a5/}
}
TY  - JOUR
AU  - H. Godinho
AU  - A. Lemos
AU  - D. Marques
TI  - Weighted zero-sum problems over $C_3^r$
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 201
EP  - 212
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a5/
LA  - en
ID  - ADM_2013_15_2_a5
ER  - 
%0 Journal Article
%A H. Godinho
%A A. Lemos
%A D. Marques
%T Weighted zero-sum problems over $C_3^r$
%J Algebra and discrete mathematics
%D 2013
%P 201-212
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a5/
%G en
%F ADM_2013_15_2_a5
H. Godinho; A. Lemos; D. Marques. Weighted zero-sum problems over $C_3^r$. Algebra and discrete mathematics, Tome 15 (2013) no. 2, pp. 201-212. http://geodesic.mathdoc.fr/item/ADM_2013_15_2_a5/

[1] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin, F. Pappalardi, “Contributions to zero-sum problems”, Discrete Math., 306 (2006), 1–10 | DOI | MR | Zbl

[2] S. D. Adhikari, R. Balasubramanian, F. Pappalardi, P. Rath, “Some zero-sum constants with weights”, Proc. Indian Acad. Sci. (Math. Sci.), 128:2 (2008), 183–188 | DOI | MR

[3] S. D. Adhikari, D. J. Grynkiewicz, Zhi-Wei Sun, On weighted zero-sum sequences, 10 Mar 2010, arXiv: 1003.2186v1 [math.CO] | MR

[4] R. Chi, S. Ding, W. Gao, A. Geroldinger, W. A. Schmid, “On zero-sum subsequence of restricted size, IV”, Acta Math. Hungar., 107:4 (2005), 337–344 | DOI | MR | Zbl

[5] Y. Edel, S. Ferret, I. Landjev, L. Storme, “The classification of the largest caps in $AG(5, 3)$”, J. Comb. Theory, 99 (2002), 95–110 | DOI | MR | Zbl

[6] P. Erdös, A. Ginzburg, A. Ziv, “Theorem in the additive number theory”, Bulletim Research Council Israel, 10F (1961), 41–43 | Zbl

[7] W. Gao, A. Geroldinger, “Zero-sum problem in finite abelian groups: A survey”, Expo. Math., 24:6 (2006), 337–369 | MR | Zbl

[8] D. J. Grynkiewicz, “A weighted Erdös–Ginzburg–Ziv theorem”, Combinatorica, 26:4 (2006), 445–453 | DOI | MR | Zbl

[9] H. Harborth, “Ein Extremal Problem für Gitterpunkte”, J. Reine Angew. Math., 262 (1973), 356–360 | MR | Zbl

[10] A. Kemnitz, “On a lattice point problem”, Ars Combinatoria, 16 (1983), 151–160 | MR | Zbl

[11] D. E. Knuth http://www-cs-faculty.stanford.edu/k̃nuth/programs/setset-all.w

[12] R. Meshulam, “On subsets of finite abelian groups with no 3-term arithmetic progressions”, J. Comb. Theory, Ser. A, 71 (1995), 168–172 | DOI | MR | Zbl

[13] R. Thangadurai, “A variant of Davenport's constant”, Proc. Indian Acad. Sci. (Math. Sci.), 117 (2007), 147–158 | DOI | MR | Zbl