Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2013_15_1_a9, author = {R. Wisbauer}, title = {Regular pairings of functors and weak (co)monads}, journal = {Algebra and discrete mathematics}, pages = {127--154}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a9/} }
R. Wisbauer. Regular pairings of functors and weak (co)monads. Algebra and discrete mathematics, Tome 15 (2013) no. 1, pp. 127-154. http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a9/
[1] Alonso Álvarez J. N., Fernández Vilaboa J. M., González Rodríguez R., Rodríguez Raposo A. B., “Crossed products in weak contexts”, Appl. Categ. Struct., 18:3 (2010), 231–258 | DOI | MR | Zbl
[2] Beck J., “Distributive laws”, Seminar on Triples and Categorical Homology Theory, LNM, 80, ed. B. Eckmann, Springer, 1969, 119–140 | MR
[3] Böhm G., “The weak theory of monads”, Adv. Math., 225:1 (2010), 1–32 | DOI | MR | Zbl
[4] Böhm G., Lack S., Street R., “On the 2-category of weak distributive laws”, Commun. Algebra, 39:12 (2011), 4567–4583 | DOI | MR | Zbl
[5] Böhm G., Lack S., Street R., “Idempotent splittings, colimit completion, and weak aspects of the theory of monads”, J. Pure Appl. Algebra, 216 (2012), 385–403 | DOI | MR | Zbl
[6] Böhm G., Nill F., Szlachányi K., “Weak Hopf algebras. I: Integral theory and $C^*$-structure”, J. Algebra, 221:2 (1999), 385–438 | DOI | MR | Zbl
[7] Brzeziński T., “The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties”, Alg. Rep. Theory, 5 (2002), 389–410 | DOI | MR | Zbl
[8] Brzeziński T., Wisbauer R., Corings and Comodules, London Math. Soc. Lecture Note Series, 309, Cambridge University Press, 2003 | MR | Zbl
[9] Caenepeel S., De Groot E., “Modules over weak entwining structures”, New trends in Hopf algebra theory, Proc. Coll. quantum groups and Hopf algebras (La Falda, Argentina, 1999), Contemp. Math., 267, eds. Andruskiewitsch N. et al., Amer. Math. Soc., Providence, 2000, 31–54 | DOI | MR | Zbl
[10] Eilenberg S., Moore J. C., “Adjoint functors and triples”, Ill. J. Math., 9 (1965), 381–398 | MR | Zbl
[11] Fernández Vilaboa J. M., González Rodríguez R., Rodríguez Raposo A. B., “Preunits and weak crossed products”, J. Pure Appl. Algebra, 213:12 (2009), 2244–2261 | DOI | MR | Zbl
[12] Fernández Vilaboa J. M., González Rodríguez R., Rodríguez Raposo A. B., Weak Crossed Biproducts and Weak Projections, 2009, arXiv: 0906.1693
[13] Johnstone P. T., “Adjoint lifting theorems for categories of modules”, Bull. Lond. Math. Soc., 7 (1975), 294–297 | DOI | MR | Zbl
[14] Kasch F., Mader A., Regularity and substructures of Hom, Frontiers in Mathematics, Birkhäuser, Basel, 2009 | MR | Zbl
[15] Lack S., Street R., “The formal theory of monads, II”, J. Pure Appl. Algebra, 175:1–3 (2002), 243–265 | DOI | MR | Zbl
[16] Sib. Mat. Zh., 15 (1974), 952–956 | DOI | DOI | MR
[17] Mesablishvili B., Wisbauer R., “Bimonads and Hopf monads on categories”, J. K-Theory, 7:2 (2011), 349–388 | DOI | MR | Zbl
[18] Mesablishvili B., Wisbauer R., On Rational Pairings of Functors, 2010, arXiv: ; Appl. Cat. Struct. (to appear) 1003.3221 | MR | DOI
[19] Pareigis B., Kategorien und Funktoren, Mathematische Leitfäden, Teubner Verlag, Stuttgart, 1969 | MR | Zbl
[20] Street R., “The formal theory of monads”, J. Pure Appl. Algebra, 2 (1972), 149–168 | DOI | MR | Zbl
[21] Wisbauer R., “Weak corings”, J. Algebra, 245:1 (2001), 123–160 | DOI | MR | Zbl
[22] Wisbauer R., “Algebras versus coalgebras”, Appl. Categ. Struct., 16:1–2 (2008), 255–295 | DOI | MR | Zbl
[23] Wisbauer R., “Lifting theorems for tensor functors on module categories”, J. Algebra Appl., 10:1 (2011), 129–155 | DOI | MR | Zbl