Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2013_15_1_a7, author = {E. P{\l}onka}, title = {Associative words in the symmetric group of degree three}, journal = {Algebra and discrete mathematics}, pages = {83--95}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a7/} }
E. Płonka. Associative words in the symmetric group of degree three. Algebra and discrete mathematics, Tome 15 (2013) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a7/
[1] Bender H., “Über den grossten $p'$-Normalteiler in $p$-auflösbaren Gruppen”, Arch. Math., 18 (1967), 15–16 | DOI | MR | Zbl
[2] Cooper C. D. H., “Words which give rise another group operation for a given group”, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973), Lecture Notes in Math., 372, Springer, Berlin, 1974, 221–225 | DOI | MR
[3] Hall M., The theory of groups, The Macmillan Company, New York, 1959 | MR
[4] Higman G., Neumann B. H., “Groups as grupoids with one law”, Publ. Math. Debrecen, 2 (1951), 215–221 | MR
[5] Hulanicki A., Świerczkowski S., “On group operations other that $xy$ or $yx$”, Publ. Math. Debrecen, 9 (1962), 142—146 | MR
[6] Krstić S., “On a theorem of Hanna Neumann”, Publ. Math. Debrecen, 31 (1994), 71–76 | MR
[7] Neumann H., “On a question of Kertesz”, Publ. Math. Debrecen, 8 (1961), 75–78 | MR | Zbl
[8] Płonka E., “On symmetrric words in the symmetric group of degree three”, Math. Scand., 99 (2006), 5–16 | MR
[9] Street A. P., “Subgroup-determining functions on groups”, Illinois J. Math., 12 (1968), 99–120 | MR | Zbl