Associative words in the symmetric group of degree three
Algebra and discrete mathematics, Tome 15 (2013) no. 1, pp. 83-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let G be a group. An element $w(x,y)$ of the absolutely free group on free generators $x,y$ is called an associative word in $G$ if the equality $w(w(g_1,g_2),g_3)=w(g_1,w(g_2,g_3))$ holds for all $g_1,g_2 \in G$. In this paper we determine all associative words in the symmetric group on three letters.
Keywords: associative words, symmetric group $S_3$.
@article{ADM_2013_15_1_a7,
     author = {E. P{\l}onka},
     title = {Associative words in the symmetric group of degree three},
     journal = {Algebra and discrete mathematics},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a7/}
}
TY  - JOUR
AU  - E. Płonka
TI  - Associative words in the symmetric group of degree three
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 83
EP  - 95
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a7/
LA  - en
ID  - ADM_2013_15_1_a7
ER  - 
%0 Journal Article
%A E. Płonka
%T Associative words in the symmetric group of degree three
%J Algebra and discrete mathematics
%D 2013
%P 83-95
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a7/
%G en
%F ADM_2013_15_1_a7
E. Płonka. Associative words in the symmetric group of degree three. Algebra and discrete mathematics, Tome 15 (2013) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a7/

[1] Bender H., “Über den grossten $p'$-Normalteiler in $p$-auflösbaren Gruppen”, Arch. Math., 18 (1967), 15–16 | DOI | MR | Zbl

[2] Cooper C. D. H., “Words which give rise another group operation for a given group”, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973), Lecture Notes in Math., 372, Springer, Berlin, 1974, 221–225 | DOI | MR

[3] Hall M., The theory of groups, The Macmillan Company, New York, 1959 | MR

[4] Higman G., Neumann B. H., “Groups as grupoids with one law”, Publ. Math. Debrecen, 2 (1951), 215–221 | MR

[5] Hulanicki A., Świerczkowski S., “On group operations other that $xy$ or $yx$”, Publ. Math. Debrecen, 9 (1962), 142—146 | MR

[6] Krstić S., “On a theorem of Hanna Neumann”, Publ. Math. Debrecen, 31 (1994), 71–76 | MR

[7] Neumann H., “On a question of Kertesz”, Publ. Math. Debrecen, 8 (1961), 75–78 | MR | Zbl

[8] Płonka E., “On symmetrric words in the symmetric group of degree three”, Math. Scand., 99 (2006), 5–16 | MR

[9] Street A. P., “Subgroup-determining functions on groups”, Illinois J. Math., 12 (1968), 99–120 | MR | Zbl