Associative words in the symmetric group of degree three
Algebra and discrete mathematics, Tome 15 (2013) no. 1, pp. 83-95
Voir la notice de l'article provenant de la source Math-Net.Ru
Let G be a group. An element $w(x,y)$ of the absolutely free group on free generators $x,y$ is called an associative word in $G$ if the equality $w(w(g_1,g_2),g_3)=w(g_1,w(g_2,g_3))$ holds for all $g_1,g_2 \in G$. In this paper we determine all associative words in the symmetric group on three letters.
Keywords:
associative words, symmetric group $S_3$.
@article{ADM_2013_15_1_a7,
author = {E. P{\l}onka},
title = {Associative words in the symmetric group of degree three},
journal = {Algebra and discrete mathematics},
pages = {83--95},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a7/}
}
E. Płonka. Associative words in the symmetric group of degree three. Algebra and discrete mathematics, Tome 15 (2013) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a7/