Generalised triangle groups of type $\mathbf{(3,q,2)}$
Algebra and discrete mathematics, Tome 15 (2013) no. 1, pp. 1-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $G$ is a group with a presentation of the form $\langle x,y|x^3=y^q=W(x,y)^2=1\rangle$, then either $G$ is virtually soluble or $G$ contains a free subgroup of rank $2$. This provides additional evidence in favour of a conjecture of Rosenberger.
Keywords: Generalized triangle groups
Mots-clés : Tits alternative.
@article{ADM_2013_15_1_a1,
     author = {J. Howie},
     title = {Generalised triangle groups of type $\mathbf{(3,q,2)}$},
     journal = {Algebra and discrete mathematics},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a1/}
}
TY  - JOUR
AU  - J. Howie
TI  - Generalised triangle groups of type $\mathbf{(3,q,2)}$
JO  - Algebra and discrete mathematics
PY  - 2013
SP  - 1
EP  - 18
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a1/
LA  - en
ID  - ADM_2013_15_1_a1
ER  - 
%0 Journal Article
%A J. Howie
%T Generalised triangle groups of type $\mathbf{(3,q,2)}$
%J Algebra and discrete mathematics
%D 2013
%P 1-18
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a1/
%G en
%F ADM_2013_15_1_a1
J. Howie. Generalised triangle groups of type $\mathbf{(3,q,2)}$. Algebra and discrete mathematics, Tome 15 (2013) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a1/

[1] O. A. Barkovich, V. V. Benyash-Krivets, “On {T}its alternative for generalized triangular groups of (2,6,2) type”, Dokl. Nat. Akad. Nauk. Belarusi, 48:3 (2004), 28–33 ({R}ussian) | MR | Zbl

[2] O. A. Barkovich, V. V. Benyash-Krivets, “On the Tits alternative for some generalized triangular groups of type $(3,4,2)$”, Dokl. Nats. Akad. Nauk Belarusi, 47:6 (2003), 24–27 (Russian) | MR | Zbl

[3] G. Baumslag, J. W. Morgan, P. B. Shalen, “Generalized triangle groups”, Math. Proc. Cambridge Philos. Soc., 102 (1987), 25–31 | DOI | MR | Zbl

[4] V. V. Benyash-Krivets, “On free subgroups of certain generalised triangle groups”, Dokl. Nat. Akad. Nauk. Belarusi, 47:3 (2003), 14–17 ({R}ussian) | MR | Zbl

[5] V. V. Benyash-Krivets, “On {R}osenberger's conjecture for generalized triangle groups of types $(2, 10, 2)$ and $(2, 20, 2)$”, Proceedings of the international conference on mathematics and its applications, eds. S. L. Kalla, M. M. Chawla, Kuwait Foundation for the Advancement of Sciences, 2005, 59–74 | MR

[6] V. V. Benyash-Krivets, “On free subgroups of generalized triangular groups of type $(2,4,2)$”, Dokl. Nats. Akad. Nauk Belarusi, 51:4 (2007), 29–32 (Russian) ; 125 | MR | Zbl

[7] V. V. Benyash-Krivets, O. A. Barkovich, “On the {T}its alternative for some generalized triangle groups”, Algebra Discrete Math., 2004, no. 3, 23–43 | MR

[8] R. Bieri, R. Strebel, “Valuations and finitely presented metabelian groups”, Proc. London Math. Soc. (3), 41 (1980), 439–464 | DOI | MR | Zbl

[9] B. Fine, F. Levin, G. Rosenberger, “Free subgroups and decompositions of one-relator products of cyclics. {I}: {T}he {T}its alternative”, Arch. Math. (Basel), 50 (1988), 97–109 | DOI | MR | Zbl

[10] B. Fine, F. Roehl, G. Rosenberger, “The {T}its alternative for generalized triangle groups”, Groups-Korea'98, Proceedings of the 4th international conference (Pusan, Korea, August 10–16, 1998), eds. Y.-G. Baik et al., Walter de Gruyter, Berlin, 2000, 95–131 | MR | Zbl

[11] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.4.12, , 2008 http://www.gap-system.org

[12] R. D. Horowitz, “Characters of free groups represented in the two-dimensional special linear group”, Comm. Pure Appl. Math., 25 (1972), 635–649 | DOI | MR | Zbl

[13] J. Howie, “The quotient of a free product of groups by a single high-powered relator. I: Pictures. Fifth and higher powers”, Proc. London Math. Soc. (3), 59 (1989), 507–540 | DOI | MR | Zbl

[14] J. Howie, “Free subgroups in groups of small deficiency”, J. Group Theory, 1 (1998), 95–112 | DOI | MR | Zbl

[15] J. Howie, Generalised triangle groups of type $(3,3,2)$, 2010, arXiv: 1012.2763 | MR

[16] J. Howie, Generalised triangle groups of type $(3,5,2)$, 2011, arXiv: 1102.2073 | MR

[17] J. Howie, G. Williams, “Free subgroups in certain generalized triangle groups of type $(2,m,2)$”, Geom. Dedicata, 119 (2006), 181–197 | DOI | MR | Zbl

[18] J. Howie, G. Williams, “The Tits alternative for generalized triangle groups of type $(3,4,2)$”, Algebra and Discrete Mathematics, 2008, no. 4, 40–48 | MR | Zbl

[19] F. Levin, G. Rosenberger, “On free subgroups of generalized triangle groups, II”, Group theory (Granville, OH, 1992), World Sci. Publ., River Edge, NJ, 1993, 206–228 | MR | Zbl

[20] G. Rosenberger, “On free subgroups of generalized triangle groups”, Algebra i Logika, 28 (1989), 227–240 ; 245 | DOI | MR | Zbl

[21] A. G. T. Williams, Studies on generalised triangle groups, Ph. D. Thesis, Heriot-Watt University, 2000 | MR

[22] A. G. T. Williams, “Generalised triangle groups of type $(2,m,2)$”, Computational and Geometric Aspects of Modern Algebra, Lecture {N}ote {S}eries, 275, eds. M. Atkinson et al., Cambridge University Press, 2000, 265–279 | MR