Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2013_15_1_a1, author = {J. Howie}, title = {Generalised triangle groups of type $\mathbf{(3,q,2)}$}, journal = {Algebra and discrete mathematics}, pages = {1--18}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a1/} }
J. Howie. Generalised triangle groups of type $\mathbf{(3,q,2)}$. Algebra and discrete mathematics, Tome 15 (2013) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/ADM_2013_15_1_a1/
[1] O. A. Barkovich, V. V. Benyash-Krivets, “On {T}its alternative for generalized triangular groups of (2,6,2) type”, Dokl. Nat. Akad. Nauk. Belarusi, 48:3 (2004), 28–33 ({R}ussian) | MR | Zbl
[2] O. A. Barkovich, V. V. Benyash-Krivets, “On the Tits alternative for some generalized triangular groups of type $(3,4,2)$”, Dokl. Nats. Akad. Nauk Belarusi, 47:6 (2003), 24–27 (Russian) | MR | Zbl
[3] G. Baumslag, J. W. Morgan, P. B. Shalen, “Generalized triangle groups”, Math. Proc. Cambridge Philos. Soc., 102 (1987), 25–31 | DOI | MR | Zbl
[4] V. V. Benyash-Krivets, “On free subgroups of certain generalised triangle groups”, Dokl. Nat. Akad. Nauk. Belarusi, 47:3 (2003), 14–17 ({R}ussian) | MR | Zbl
[5] V. V. Benyash-Krivets, “On {R}osenberger's conjecture for generalized triangle groups of types $(2, 10, 2)$ and $(2, 20, 2)$”, Proceedings of the international conference on mathematics and its applications, eds. S. L. Kalla, M. M. Chawla, Kuwait Foundation for the Advancement of Sciences, 2005, 59–74 | MR
[6] V. V. Benyash-Krivets, “On free subgroups of generalized triangular groups of type $(2,4,2)$”, Dokl. Nats. Akad. Nauk Belarusi, 51:4 (2007), 29–32 (Russian) ; 125 | MR | Zbl
[7] V. V. Benyash-Krivets, O. A. Barkovich, “On the {T}its alternative for some generalized triangle groups”, Algebra Discrete Math., 2004, no. 3, 23–43 | MR
[8] R. Bieri, R. Strebel, “Valuations and finitely presented metabelian groups”, Proc. London Math. Soc. (3), 41 (1980), 439–464 | DOI | MR | Zbl
[9] B. Fine, F. Levin, G. Rosenberger, “Free subgroups and decompositions of one-relator products of cyclics. {I}: {T}he {T}its alternative”, Arch. Math. (Basel), 50 (1988), 97–109 | DOI | MR | Zbl
[10] B. Fine, F. Roehl, G. Rosenberger, “The {T}its alternative for generalized triangle groups”, Groups-Korea'98, Proceedings of the 4th international conference (Pusan, Korea, August 10–16, 1998), eds. Y.-G. Baik et al., Walter de Gruyter, Berlin, 2000, 95–131 | MR | Zbl
[11] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.4.12, , 2008 http://www.gap-system.org
[12] R. D. Horowitz, “Characters of free groups represented in the two-dimensional special linear group”, Comm. Pure Appl. Math., 25 (1972), 635–649 | DOI | MR | Zbl
[13] J. Howie, “The quotient of a free product of groups by a single high-powered relator. I: Pictures. Fifth and higher powers”, Proc. London Math. Soc. (3), 59 (1989), 507–540 | DOI | MR | Zbl
[14] J. Howie, “Free subgroups in groups of small deficiency”, J. Group Theory, 1 (1998), 95–112 | DOI | MR | Zbl
[15] J. Howie, Generalised triangle groups of type $(3,3,2)$, 2010, arXiv: 1012.2763 | MR
[16] J. Howie, Generalised triangle groups of type $(3,5,2)$, 2011, arXiv: 1102.2073 | MR
[17] J. Howie, G. Williams, “Free subgroups in certain generalized triangle groups of type $(2,m,2)$”, Geom. Dedicata, 119 (2006), 181–197 | DOI | MR | Zbl
[18] J. Howie, G. Williams, “The Tits alternative for generalized triangle groups of type $(3,4,2)$”, Algebra and Discrete Mathematics, 2008, no. 4, 40–48 | MR | Zbl
[19] F. Levin, G. Rosenberger, “On free subgroups of generalized triangle groups, II”, Group theory (Granville, OH, 1992), World Sci. Publ., River Edge, NJ, 1993, 206–228 | MR | Zbl
[20] G. Rosenberger, “On free subgroups of generalized triangle groups”, Algebra i Logika, 28 (1989), 227–240 ; 245 | DOI | MR | Zbl
[21] A. G. T. Williams, Studies on generalised triangle groups, Ph. D. Thesis, Heriot-Watt University, 2000 | MR
[22] A. G. T. Williams, “Generalised triangle groups of type $(2,m,2)$”, Computational and Geometric Aspects of Modern Algebra, Lecture {N}ote {S}eries, 275, eds. M. Atkinson et al., Cambridge University Press, 2000, 265–279 | MR