Reduction of matrices over Bezout domains of stable range 1 with Dubrovin's condition in which maximal nonprincipal ideals are two-sides
Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 230-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that each matrix over Bezout domain of stable range $1$ with Dubrovin's condition, in which every maximal nonprincipal ideals are tho-sides ideals, is equivalent to diagonal one with right total division of diagonal elements.
Keywords: maximal nonprincipal ideal, right total division.
Mots-clés : Bezout domain, domain of stable range 1, Dubrovin's condition
@article{ADM_2012_14_2_a6,
     author = {Tetyana Kysil and Bogdan Zabavskiy and Olga Domsha},
     title = {Reduction of matrices over {Bezout} domains of stable range 1 with {Dubrovin's} condition in which maximal nonprincipal ideals are two-sides},
     journal = {Algebra and discrete mathematics},
     pages = {230--235},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a6/}
}
TY  - JOUR
AU  - Tetyana Kysil
AU  - Bogdan Zabavskiy
AU  - Olga Domsha
TI  - Reduction of matrices over Bezout domains of stable range 1 with Dubrovin's condition in which maximal nonprincipal ideals are two-sides
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 230
EP  - 235
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a6/
LA  - en
ID  - ADM_2012_14_2_a6
ER  - 
%0 Journal Article
%A Tetyana Kysil
%A Bogdan Zabavskiy
%A Olga Domsha
%T Reduction of matrices over Bezout domains of stable range 1 with Dubrovin's condition in which maximal nonprincipal ideals are two-sides
%J Algebra and discrete mathematics
%D 2012
%P 230-235
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a6/
%G en
%F ADM_2012_14_2_a6
Tetyana Kysil; Bogdan Zabavskiy; Olga Domsha. Reduction of matrices over Bezout domains of stable range 1 with Dubrovin's condition in which maximal nonprincipal ideals are two-sides. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 230-235. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a6/

[1] Kaplansky I., “Elementary divisors and modules”, Trans. Amer. Math. Soc., 66 (1949), 464–491 | DOI | MR | Zbl

[2] Jacobson N., Ring Theory, Publishers of foreign literature, M., 1947

[3] Cohn P. M., “Right principal Bezout domains”, J. London Math. Soc., 35:2 (1987), 251–262 | DOI | MR | Zbl

[4] Zabavskiy B. V., Komarnitskiy N. Ya., “Distributive domains jf elementary divisors”, Ukr. Math. J., 42:7 (1990), 1000–1004 | MR

[5] Vaserstein L. N., “Bass's first stable range condition”, J. of Pure and Appl. Alg., 34 (1984), 319–330 | DOI | MR | Zbl

[6] Zabavskiy B. V., “Reduction of matrices over Bezout rings of stable range at most 2”, Ukr. Math. J., 55:4 (2003), 550–554 | MR

[7] Zabavskiy B. V., “On noncommutative rings with elementary divisors”, Ukr. Math. J., 42:6 (1990), 847–850 | MR

[8] Dubrovin N. I., “On noncommutative rings with elementary divisors”, Reports of institutes of higher education. Mathematics, 1986, no. 11, 14–20 | MR | Zbl

[9] Zabavskiy B. V., “Factorial analogue of distributive Bezout domains”, Ukr. Math. J., 53:11 (2001), 1564–1567 | MR

[10] Amitsur S. A., “Remarks of principal ideal rings”, Osaka Math. Journ., 15 (1963), 59–69 | MR | Zbl