Word length in symmetrized presentations of Thompson's group $F$
Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 185-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

Thompson's groups $F, T$ and $Z$ were introduced by Richard Thompson in the 1960's in connection with questions in logic. They have since found applications in many areas of mathematics including algebra, logic and topology, and their metric properties with respect to standard generating sets have been studied heavily. In this paper, we introduce a new family of generating sets for $F$, which we denote as $Z_n$, establish a formula for the word metric with respect to $Z_1$ and prove that $F$ has dead ends of depth at least $2$ with respect to $Z_1$.
Keywords: Thompson's group $F$, dead ends, diagram group.
@article{ADM_2012_14_2_a4,
     author = {Matthew Horak and Alexis Johnson and Amelia Stonesifer},
     title = {Word length in symmetrized presentations of {Thompson's} group $F$},
     journal = {Algebra and discrete mathematics},
     pages = {185--216},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a4/}
}
TY  - JOUR
AU  - Matthew Horak
AU  - Alexis Johnson
AU  - Amelia Stonesifer
TI  - Word length in symmetrized presentations of Thompson's group $F$
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 185
EP  - 216
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a4/
LA  - en
ID  - ADM_2012_14_2_a4
ER  - 
%0 Journal Article
%A Matthew Horak
%A Alexis Johnson
%A Amelia Stonesifer
%T Word length in symmetrized presentations of Thompson's group $F$
%J Algebra and discrete mathematics
%D 2012
%P 185-216
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a4/
%G en
%F ADM_2012_14_2_a4
Matthew Horak; Alexis Johnson; Amelia Stonesifer. Word length in symmetrized presentations of Thompson's group $F$. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 185-216. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a4/

[1] G. N. Arzhantseva, V. S. Guba, M. V. Sapir, “Metrics on diagram groups and uniform embeddings in a Hilbert space”, Comment. Math. Helv., 81:4 (2006), 911–929 | DOI | MR | Zbl

[2] James Belk, Kai-Uwe Bux, “Thompson's group $F$ is maximally nonconvex”, Geometric methods in group theory, Contemp. Math., 372, Amer. Math. Soc., Providence, RI, 2005, 131–146 | DOI | MR | Zbl

[3] James Belk, Kai-Uwe Bux, “Thompson's group $F$ is maximally nonconvex”, Geometric methods in group theory, Contemp. Math., 372, Amer. Math. Soc., Providence, RI, 2005, 131–146 | DOI | MR | Zbl

[4] O. V. Bogopol'skiĭ, “Infinite commensurable hyperbolic groups are bi-Lipschitz equivalent”, Algebra i Logika, 36:3 (1997), 259–272 ; 357 | DOI | MR | Zbl

[5] J. W. Cannon, Floyd, What is{$\dots$}thompson's group?, Notices Amer. Math. Soc., 58:8 (2011), 1112–1113 | MR | Zbl

[6] J. W. Cannon, W. J. Floyd, W. R. Parry, “Introductory notes on Richard Thompson's groups”, Enseign. Math. (2), 42:3–4 (1996), 215–256 | MR | Zbl

[7] Sean Cleary, Jennifer Taback, “Combinatorial properties of Thompson's group $F$”, Trans. Amer. Math. Soc., 356:7 (2004), 2825–2849 (electronic) | DOI | MR | Zbl

[8] S. Blake Fordham, “Minimal length elements of Thompson's group $F$”, Geom. Dedicata, 99 (2003), 179–220 | DOI | MR | Zbl

[9] Victor Guba, Mark Sapir, Diagram groups, Mem. Amer. Math. Soc., 130, no. 620, 1997, viii+117 pp. | MR

[10] Matthew Horak, Melanie Stein, Jennifer Taback, “Computing word length in alternate presentations of Thompson's group $F$”, Internat. J. Algebra Comput., 19:8 (2009), 963–997 | DOI | MR | Zbl

[11] Matthew Horak, Melanie Stein, Jennifer Taback, “A note on convexity properties of Thompson's group $F$”, J. Group Theory, 2011 (to appear)

[12] Russell Lyons, Robin Pemantle, Yuval Peres, “Random walks on the lamplighter group”, Ann. Probab., 24:4 (1996), 1993–2006 | DOI | MR | Zbl