Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2012_14_2_a4, author = {Matthew Horak and Alexis Johnson and Amelia Stonesifer}, title = {Word length in symmetrized presentations of {Thompson's} group $F$}, journal = {Algebra and discrete mathematics}, pages = {185--216}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a4/} }
TY - JOUR AU - Matthew Horak AU - Alexis Johnson AU - Amelia Stonesifer TI - Word length in symmetrized presentations of Thompson's group $F$ JO - Algebra and discrete mathematics PY - 2012 SP - 185 EP - 216 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a4/ LA - en ID - ADM_2012_14_2_a4 ER -
Matthew Horak; Alexis Johnson; Amelia Stonesifer. Word length in symmetrized presentations of Thompson's group $F$. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 185-216. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a4/
[1] G. N. Arzhantseva, V. S. Guba, M. V. Sapir, “Metrics on diagram groups and uniform embeddings in a Hilbert space”, Comment. Math. Helv., 81:4 (2006), 911–929 | DOI | MR | Zbl
[2] James Belk, Kai-Uwe Bux, “Thompson's group $F$ is maximally nonconvex”, Geometric methods in group theory, Contemp. Math., 372, Amer. Math. Soc., Providence, RI, 2005, 131–146 | DOI | MR | Zbl
[3] James Belk, Kai-Uwe Bux, “Thompson's group $F$ is maximally nonconvex”, Geometric methods in group theory, Contemp. Math., 372, Amer. Math. Soc., Providence, RI, 2005, 131–146 | DOI | MR | Zbl
[4] O. V. Bogopol'skiĭ, “Infinite commensurable hyperbolic groups are bi-Lipschitz equivalent”, Algebra i Logika, 36:3 (1997), 259–272 ; 357 | DOI | MR | Zbl
[5] J. W. Cannon, Floyd, What is{$\dots$}thompson's group?, Notices Amer. Math. Soc., 58:8 (2011), 1112–1113 | MR | Zbl
[6] J. W. Cannon, W. J. Floyd, W. R. Parry, “Introductory notes on Richard Thompson's groups”, Enseign. Math. (2), 42:3–4 (1996), 215–256 | MR | Zbl
[7] Sean Cleary, Jennifer Taback, “Combinatorial properties of Thompson's group $F$”, Trans. Amer. Math. Soc., 356:7 (2004), 2825–2849 (electronic) | DOI | MR | Zbl
[8] S. Blake Fordham, “Minimal length elements of Thompson's group $F$”, Geom. Dedicata, 99 (2003), 179–220 | DOI | MR | Zbl
[9] Victor Guba, Mark Sapir, Diagram groups, Mem. Amer. Math. Soc., 130, no. 620, 1997, viii+117 pp. | MR
[10] Matthew Horak, Melanie Stein, Jennifer Taback, “Computing word length in alternate presentations of Thompson's group $F$”, Internat. J. Algebra Comput., 19:8 (2009), 963–997 | DOI | MR | Zbl
[11] Matthew Horak, Melanie Stein, Jennifer Taback, “A note on convexity properties of Thompson's group $F$”, J. Group Theory, 2011 (to appear)
[12] Russell Lyons, Robin Pemantle, Yuval Peres, “Random walks on the lamplighter group”, Ann. Probab., 24:4 (1996), 1993–2006 | DOI | MR | Zbl