On verbal subgroups in finite and profinite groups
Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $w$ be a multilinear commutator word. In the present paper we describe recent results that show that if $G$ is a profinite group in which all $w$-values are contained in a union of finitely (or in some cases countably) many subgroups with a prescribed property, then the verbal subgroup $w(G)$ has the same property as well. In particular, we show this in the case where the subgroups are periodic or of finite rank.
Keywords: Profinite groups, verbal subgroups, coverings, multilinear commutators.
@article{ADM_2012_14_1_a1,
     author = {Cristina Acciarri and Pavel Shumyatsky},
     title = {On verbal subgroups in finite and profinite groups},
     journal = {Algebra and discrete mathematics},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a1/}
}
TY  - JOUR
AU  - Cristina Acciarri
AU  - Pavel Shumyatsky
TI  - On verbal subgroups in finite and profinite groups
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 1
EP  - 13
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a1/
LA  - en
ID  - ADM_2012_14_1_a1
ER  - 
%0 Journal Article
%A Cristina Acciarri
%A Pavel Shumyatsky
%T On verbal subgroups in finite and profinite groups
%J Algebra and discrete mathematics
%D 2012
%P 1-13
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a1/
%G en
%F ADM_2012_14_1_a1
Cristina Acciarri; Pavel Shumyatsky. On verbal subgroups in finite and profinite groups. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a1/

[1] C. Acciarri, G. A. Fernández-Alcober, P. Shumyatsky, “A focal subgroup theorem for outer commutator words”, J. Group Theory, 15 (2012), 397–405 | DOI | MR | Zbl

[2] C. Acciarri, P. Shumyatsky, “On profinite groups in which commutators are covered by finitely many subgroups”, Math. Z. (to appear) | DOI

[3] S. Brazil, A. Krasilnikov, P. Shumyatsky, “Groups with bounded verbal conjugacy classes”, J. Group Theory, 9 (2006), 127–137 | DOI | MR | Zbl

[4] G. Cutolo, C. Nicotera, “Verbal sets and cyclic coverings”, J. Algebra, 324 (2010), 1616–1624 | DOI | MR | Zbl

[5] G. A. Fernández-Alcober, M. Morigi, “Outer commutator words are uniformly concise”, J. London Math. Soc., 82 (2010), 581–595 | DOI | MR | Zbl

[6] G. A. Fernández-Alcober, P. Shumyatsky, “On groups in which commutators are covered by finitely many cyclic subgroups”, J. Algebra, 319 (2008), 4844–4851 | DOI | MR | Zbl

[7] S. Franciosi, F. de Giovanni, L. A. Kurdachenko, “The Schur property and groups with uniform conjugacy classes”, J. Algebra, 174 (1995), 823–847 | DOI | MR | Zbl

[8] D. Gorenstein, Finite Groups, Chelsea Publishing Company, New York, 1980 | MR | Zbl

[9] P. Hall, G. Higman, “The $p$-length of a $p$-soluble group and reduction theorems for Burnside's problem”, Proc. London Math. Soc. (3), 6 (1956), 1–42 | DOI | MR | Zbl

[10] W. Herfort, “Compact torsion groups and finite exponent”, Arch. Math., 33 (1979), 404–410 | DOI | MR

[11] S. V. Ivanov, “P. Hall's conjecture on the finiteness of verbal subgroups”, Izv. Vyssh. Ucheb. Zaved., 325 (1989), 60–70

[12] J. L. Kelley, General Topology, van Norstand, Toronto–New York–London, 1955 | MR | Zbl

[13] E. I. Khukhro, “A comment on periodic compact groups”, Sib. Math. J., 30:3 (1989), 493–496 | DOI | MR | Zbl

[14] A. Lubotzky, A. Mann, “Powerful $p$-groups. I: finite groups”, J. Algebra, 105 (1987), 484–505 | DOI | MR | Zbl

[15] A. Mann, “The exponents of central factor and commutator groups”, J. Group Theory, 10 (2007), 435–436 | DOI | MR | Zbl

[16] Ju. I. Merzlyakov, “Verbal and marginal subgroups of linear groups”, Dokl. Akad. Nauk SSSR, 177 (1967), 1008–1011 | MR

[17] B. H. Neumann, “Groups covered by finitely many cosets”, Publ. Math. Debrecen, 3 (1954), 227–242 | MR | Zbl

[18] B. H. Neumann, “Groups covered by permutable subsets”, J. London Math. Soc., 29 (1954), 236–248 | DOI | MR | Zbl

[19] A. Yu. Ol'shanskii, Geometry of Defining Relations in Groups, Mathematics and its applications (Soviet Series), 70, Kluwer Academic Publishers, Dordrecht, 1991 | DOI | MR

[20] L. Ribes, P. Zalesskii, Profinite Groups, 2nd Edition, Springer Verlag, Berlin–New York, 2010 | MR | Zbl

[21] D. J. S. Robinson, A Course in the Theory of Groups, 2nd Edition, Springer-Verlag, 1995

[22] J. R. Rogério, P. Shumyatsky, “A finiteness condition for verbal subgroups”, J. Group Theory, 10 (2007), 811–815 | DOI | MR | Zbl

[23] D. Segal, Words: notes on verbal width in groups, LMS Lecture Notes, 361, Cambridge University Press, Cambridge, 2009 | Zbl

[24] P. Shumyatsky, “Verbal subgroups in residually finite groups”, Quart. J. Math., 51 (2000), 523–528 | DOI | Zbl

[25] P. Shumyatsky, “On the exponent of a verbal subgroup in a finite group”, J. Aust. Math. Soc. (to appear)

[26] R. F. Turner-Smith, “Finiteness conditions for verbal subgroups”, J. London Math. Soc., 41 (1966), 166–176 | DOI | Zbl

[27] J. Wilson, “On outer-commutator words”, Can. J. Math., 26 (1974), 608–620 | DOI | Zbl

[28] J. S. Wilson, “On the structure of compact torsion groups”, Monatsh. Math., 96 (1983), 57–66 | DOI | Zbl

[29] J. S. Wilson, Profinite Groups, Clarendon Press, Oxford, 1998

[30] E. Zelmanov, “On periodic compact groups”, Israel J. Math., 77 (1992), 83–95 | DOI | Zbl

[31] E. Zelmanov, “Lie methods in the theory of nilpotent groups”, Groups'93 Galaway/St. Andrews, Cambridge University Press, Cambridge, 1995, 567–585 | Zbl

[32] E. Zelmanov, “Nil rings and periodic groups”, The Korean Mathematical Society Lecture Notes in Mathematics, Seoul, 1992