On inverse operations in the lattices of submodules
Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 273-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the lattice ${\boldsymbol{L}}(_RM)$ of submodules of an arbitrary left $R$-module ${}_RM$ four operation were introduced and investigated in the paper [3]. In the present work the approximations of inverse operations for two of these operations (for $\alpha$-product and $\omega$-coproduct) are defined and studied. Some properties of left quotient with respect to $\alpha$-product and right quotient with respect to $\omega$-coproduct are shown, as well as their relations with the lattice operations in ${\boldsymbol{L}}(_RM)$ (sum and intersection of submodules). The particular case ${}_RM= {}_RR$ of the lattice ${\boldsymbol{L}}(_RR)$ of left ideals of the ring $R$ is specified.
Keywords: ring, preradical, lattice, $\alpha$-product of submodules, left (right) quotient.
Mots-clés : module
@article{ADM_2012_13_2_a7,
     author = {A. I. Kashu},
     title = {On inverse operations in the lattices  of submodules},
     journal = {Algebra and discrete mathematics},
     pages = {273--288},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a7/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - On inverse operations in the lattices  of submodules
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 273
EP  - 288
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a7/
LA  - en
ID  - ADM_2012_13_2_a7
ER  - 
%0 Journal Article
%A A. I. Kashu
%T On inverse operations in the lattices  of submodules
%J Algebra and discrete mathematics
%D 2012
%P 273-288
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a7/
%G en
%F ADM_2012_13_2_a7
A. I. Kashu. On inverse operations in the lattices  of submodules. Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 273-288. http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a7/

[1] L. Bican, P. Jambor, T. Kepka, P. Nemec, “Prime and coprime modules”, Fundamenta Mathematicae, 107:1 (1980), 33–45 | MR | Zbl

[2] A. I. Kashu, “Preradicals and characteristic submodules: connections and operations”, Algebra and discrete mathematics, 9:2 (2010), 61–77 | MR

[3] A. I. Kashu, “On some operations in the lattice of submodules determinined by preradicals”, Bulet. A.Ş.M. Matematica, 2011, no. 2 (66), 5–16 | MR | Zbl

[4] L. Bican, T. Kepka, P. Nemec, Rings, modules and preradicals, Marcel Dekker, New York, 1982 | MR | Zbl

[5] J. S. Golan, Linear topologies on a ring, Longman Sci. Techn., New York, 1987 | MR | Zbl

[6] F. Raggi, J. R. Montes, H. Rincon, et al., “The lattice structure of preradicals”, Commun. in Algebra, 30:3 (2002), 1533–1544 | DOI | MR | Zbl