The spectral measure of the Markov operator related to 3-generated 2-group of intermediate growth and its Jacobi parameters
Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 237-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the KNS-spectral measure of the typical Schreier graph of the action of $3$-generated $2$-group of intermediate growth constructed by the first author in 1980 on the boundary of binary rooted tree coincides with the Kesten’s spectral measure, and coincides (up to affine transformation of $\mathbb R$) with the density of states of the corresponding diatomic linear chain. Jacoby matrix associated with Markov operator of simple random walk on these graphs is computed. It shown shown that KNS and Kesten's spectral measures of the Schreier graph based on the orbit of the point $1^{\infty}$ are different but have the same support and are absolutely continuous with respect to the Lebesgue measure.
Keywords: group of intermediate growth, diatomic linear chain, random walk, spectral measure, Schreier graph, discrete Laplacian.
@article{ADM_2012_13_2_a6,
     author = {R. I. Grigorchuk and Ya. S. Krylyuk},
     title = {The spectral measure of the {Markov} operator related to 3-generated 2-group of intermediate growth and its {Jacobi} parameters},
     journal = {Algebra and discrete mathematics},
     pages = {237--272},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a6/}
}
TY  - JOUR
AU  - R. I. Grigorchuk
AU  - Ya. S. Krylyuk
TI  - The spectral measure of the Markov operator related to 3-generated 2-group of intermediate growth and its Jacobi parameters
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 237
EP  - 272
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a6/
LA  - en
ID  - ADM_2012_13_2_a6
ER  - 
%0 Journal Article
%A R. I. Grigorchuk
%A Ya. S. Krylyuk
%T The spectral measure of the Markov operator related to 3-generated 2-group of intermediate growth and its Jacobi parameters
%J Algebra and discrete mathematics
%D 2012
%P 237-272
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a6/
%G en
%F ADM_2012_13_2_a6
R. I. Grigorchuk; Ya. S. Krylyuk. The spectral measure of the Markov operator related to 3-generated 2-group of intermediate growth and its Jacobi parameters. Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 237-272. http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a6/

[Akh65] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Translated by N. Kemmer, Hafner Publishing Co., New York, 1965 | MR

[Ale72] S. V. Alešin, “Finite automata and the Burnside problem for periodic groups”, Mat. Zametki, 11 (1972), 319–328 | MR | Zbl

[Aus09] T. Austin, Rational group ring elements with kernels having irrational dimension, 2009, arXiv: 0909.2360[math.GR]

[BG00a] L. Bartholdi, R. I. Grigorchuk, “On the spectrum of Hecke type operators related to some fractal groups”, Din. Sist., Avtom. i Beskon. Gruppy, Tr. Mat. Inst. Steklova, 231, 2000, 5–45 | MR | Zbl

[BG00b] Laurent Bartholdi, Rostislav I. Grigorchuk, “Spectra of non-commutative dynamical systems and graphs related to fractal groups”, C. R. Acad. Sci. Paris Sér. I Math., 331:6 (2000), 429–434 | DOI | MR | Zbl

[BGK${}^+$07] Ye. V. Bondarenko, R. I. Grigorchuk, R. V. Kravchenko, Y. V. Muntyan, V. V. Nekrashevich, D. M. Savchuk, Z. Sunik, “On classification of the groups, which are generated by automatons with three states on alphabet with two letters, and on some questions concerned with such groups”, Zbirnyk Naukovyh Prats, Naukovy Visnyk Chernivetskogo Universytetu, 336–337, 2007 | Zbl

[BGN03] Laurent Bartholdi, Rostislav Grigorchuk, Volodymyr Nekrashevych, “From fractal groups to fractal sets”, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, 2003, 25–118 | MR | Zbl

[Bri53] L. Brillouin, Wave propagation in periodic structures. {E}lectric filters and crystal lattices, 2d ed., Dover Publications Inc., New York, N. Y., 1953 | MR | Zbl

[Gau84] Walter Gautschi, “On some orthogonal polynomials of interest in theoretical chemistry”, BIT, 24:4 (1984), 473–483 | DOI | MR | Zbl

[GL02] Rostislav I. Grigorchuk, Igor Lysenok, “Burnside problem”, The Consice handbook of algebra, eds. A. V. Mikhalev, Gunter F. Pilz, Kluwer Academic Publishers, 2002, 111–115

[GLS{\.Z}00] Rostislav I. Grigorchuk, Peter Linnell, Thomas Schick, Andrzej Żuk, “On a question of Atiyah”, C. R. Acad. Sci. Paris Sér. I Math., 331:9 (2000), 663–668 | DOI | MR | Zbl

[GN07] Rostislav Grigorchuk, Volodymyr Nekrashevych, “Self-similar groups, operator algebras and Schur complement”, J. Mod. Dyn., 1:3 (2007), 323–370 | DOI | MR | Zbl

[GNS00a] R. I. Grigorchuk, V. V. Nekrashevich, V. I. Sushchanskiĭ, “Automata, dynamical systems, and groups”, Din. Sist., Avtom. i Beskon. Gruppy, Tr. Mat. Inst. Steklova, 231, 2000, 134–214 | MR | Zbl

[GNS00b] R. I. Grigorchuk, V. V. Nekrashevich, V. I. Sushchanskiĭ, “Automata, dynamical systems, and infinite groups”, Din. Sist., Avtom. i Beskon. Gruppy, Tr. Mat. Inst. Steklova, 231, 2000, 134–214 | MR | Zbl

[Gol64] E. S. Golod, “On nil-algebras and finitely approximable $p$-groups”, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 273–276 | MR | Zbl

[Gra09] I. Grabowski, On the atiyah problem for the lamplighter groups, 2009, arXiv: 1009.0229[math.GR]

[Gri80] R. I. Grigorčuk, “On Burnside's problem on periodic groups”, Funktsional. Anal. i Prilozhen., 14:1 (1980), 53–54 | MR | Zbl

[Gri83] R. I. Grigorchuk, “On the Milnor problem of group growth”, Dokl. Akad. Nauk SSSR, 271:1 (1983), 30–33 | MR | Zbl

[Gri84] R. I. Grigorchuk, “Degrees of growth of finitely generated groups and the theory of invariant means”, Izv. Akad. Nauk SSSR Ser. Mat., 48:5 (1984), 939–985 | MR

[Gri88] R. I. Grigorchuk, “Semigroups with cancellations of degree growth”, Mat. Zametki, 43:3 (1988), 305–319 ; 428 | MR

[Gri00a] R. I. Grigorchuk, “Branch groups”, Mat. Zametki, 67:6 (2000), 852–858 | DOI | MR | Zbl

[Gri00b] R. I. Grigorchuk, “Just infinite branch groups”, New horizons in pro-$p$ groups, Progr. Math., 184, Birkhäuser Boston, Boston, MA, 2000, 121–179 | MR | Zbl

[Gri05] Rostislav Grigorchuk, “Solved and unsolved problems around one group”, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., 248, Birkhäuser, Basel, 2005, 117–218 | DOI | MR | Zbl

[Gri11] R. I. Grigorchuk, “Some topics of group actions on rooted trees”, The Proceedings of the Steklov Institute of Math., 273, 2011, 64–175 | DOI | MR | Zbl

[G{\v{S}}06] Rostislav Grigorchuk, Zoran Šuniḱ, “Asymptotic aspects of Schreier graphs and Hanoi Towers groups”, C. R. Math. Acad. Sci. Paris, 342:8 (2006), 545–550 | DOI | MR | Zbl

[G{\v{S}}07] Rostislav Grigorchuk, Zoran Šuniḱ, “Self-similarity and branching in group theory”, Groups St. Andrews 2005, v. I, London Math. Soc. Lecture Note Ser., 339, Cambridge Univ. Press, Cambridge, 2007, 36–95 | MR | Zbl

[GS{\v{S}}07a] Rostislav Grigorchuk, Dmytro Savchuk, Zoran Šunić, “The spectral problem, substitutions and iterated monodromy”, Probability and mathematical physics, CRM Proc. Lecture Notes, 42, Amer. Math. Soc., Providence, RI, 2007, 225–248 | MR | Zbl

[GS{\v{S}}07b] Rostislav Grigorchuk, Dmytro Savchuk, Zoran Šuniḱ, “The spectral problem, substitutions and iterated monodromy”, Probability and Mathematical Physics, A Volume in Honor of Stanislav Molchanov, CRM Proceedings and Lecture Notes, 42, American Mathematical Society, Providence, Rhode Island USA, 2007, 225–248 | MR | Zbl

[G{\.Z}99] Rostislav I. Grigorchuk, Andrzej Żuk, “On the asymptotic spectrum of random walks on infinite families of graphs”, Random walks and discrete potential theory (Cortona, 1997), Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999, 188–204 | MR | Zbl

[G{\.Z}01] Rostislav I. Grigorchuk, Andrzej Żuk, “The lamplighter group as a group generated by a 2-state automaton, and its spectrum”, Geom. Dedicata, 87:1–3 (2001), 209–244 | MR | Zbl

[G{\.Z}04] Rostislav I. Grigorchuk, Andrzej Żuk, “The Ihara zeta function of infinite graphs, the KNS spectral measure and integrable maps”, Random walks and geometry, Walter de Gruyter GmbH Co., KG, Berlin, 2004, 141–180 | MR | Zbl

[Ho{\v r}63] J. Hořeiš, “Transformations defined by finite automata”, Problemy Kibernetiki, 9 (1963), 23–26 (in Russian) | Zbl

[Kes59] Harry Kesten, “Symmetric random walks on groups”, Trans. Amer. Math. Soc., 92 (1959), 336–354 | DOI | MR | Zbl

[LW10] F. Lehner, S. Wagner, Free lamplighter groups and a question of atiyah, 2010, arXiv: 1005.2347[math.GR]

[Nek05] Volodymyr Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, 2005 | MR

[PSZ10] M. Pichot, T. Schick, A. Zuk, Closed manifolds with transcendental l2-betti numbers, 2010, arXiv: 1005.1147[math.GR]

[Ser97] Jean-Pierre Serre, “Répartition asymptotique des valeurs propres de l'opérateur de Hecke $T_p$”, J. Amer. Math. Soc., 10:1 (1997), 75–102 | DOI | MR | Zbl

[vN29] John von Neumann, “Zur allgemeinen Theorie des Masses”, Fund. Math., 13 (1929), 73–116; 333; Collected works, v. I, 599–643

[Whe84] John C. Wheeler, “Modified moments and continued fraction coefficients for the diatomic linear chain”, The Journal of Chemical Physics, 80:1 (1984), 472–476 | DOI