One branch curve singularities with at most 2-parameter families of ideals
Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 209-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion is given in order that the ideals of a one branch curve singularity form at most $2$-parameter families. Namely, we present a list of plane curve singularities from the Arnold's classification which are the smallest among all one branch singularities having at most $2$-parameter families of ideals.
Keywords: Curve singularity, ideal, family of ideals
Mots-clés : sandwich technique.
@article{ADM_2012_13_2_a4,
     author = {Yuriy A. Drozd and Ruslan V. Skuratovskii},
     title = {One branch curve singularities with at most 2-parameter families of ideals},
     journal = {Algebra and discrete mathematics},
     pages = {209--219},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a4/}
}
TY  - JOUR
AU  - Yuriy A. Drozd
AU  - Ruslan V. Skuratovskii
TI  - One branch curve singularities with at most 2-parameter families of ideals
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 209
EP  - 219
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a4/
LA  - en
ID  - ADM_2012_13_2_a4
ER  - 
%0 Journal Article
%A Yuriy A. Drozd
%A Ruslan V. Skuratovskii
%T One branch curve singularities with at most 2-parameter families of ideals
%J Algebra and discrete mathematics
%D 2012
%P 209-219
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a4/
%G en
%F ADM_2012_13_2_a4
Yuriy A. Drozd; Ruslan V. Skuratovskii. One branch curve singularities with at most 2-parameter families of ideals. Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 209-219. http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a4/

[1] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Singularities of Differentiable Maps, Nauka, Moscow, 1982 | MR

[2] Bass H., “Torsion free and projective modules”, Trans. Amer. Math. Soc., 162 (1962), 319–327 | DOI | MR

[3] Bass H., “On the ubiquity of Gorenstein rings”, Math. Z., 182 (1963), 8–28 | DOI | MR

[4] Borevich Z. I., Faddeev D. K., “Representations of orders with cyclic index”, Trudy Matem. In-ta Steklova, 80, 1965, 51–65 | MR | Zbl

[5] Drozd Y. A., “Ideals of commutative rings”, Matem. Sb., 101 (1976), 334–348 | MR | Zbl

[6] Drozd Y. A., Greuel G.-M., “Semi-continuity for Cohen–Macaulay modules”, Math. Ann., 306 (1996), 371–389 | DOI | MR | Zbl

[7] Drozd Y. A., Greuel G.-M., “Cohen–Macaulay module type”, Composition Math., 89 (1993), 315–338 | MR | Zbl

[8] Drozd Y. A., Greuel G.-M., “On Schappert's characterization of strictly unimodal plane curve singularities”, Singularities, The Brieskorn Anniversary Volume, Birkhäuser, 1998, 3–26 | DOI | MR | Zbl

[9] Drozd Y. A., Roiter A. V., “Commutative rings with a finite number of integral indecomposable representations”, Izvestia AN SSSR. Ser. Matem., 31 (1967), 783–798 | MR | Zbl

[10] Drozd Y. A., Skuratovskii R. V., “Cubic rings and their ideals”, Ukrainian Math. J., 62 (2010), 464–470 | DOI | MR | Zbl

[11] Greuel G.-M., Knörrer H., “Einfache Kurvensingularitäten und torsionsfreie Moduln”, Math. Ann., 270 (1985), 417–425 | DOI | MR | Zbl

[12] Griffiths P. A., Introduction to Algebraic Curves, AMS, 1989 | MR | Zbl

[13] Jacobinski H., “Sur les ordres commutatifs avec un nombre fini de réseaux indecomposables”, Acta Math., 118 (1967), 1–31 | DOI | MR | Zbl

[14] Schappert A., “A characterization of strictly unimodal plane curve singularities”, Singularities, Representations of Algebras and Vector Bundles, Lecture Notes in Math., 1273, Springer–Verlag, 1987, 168–177 | DOI | MR

[15] Skuratovskii R. V., “Ideals of one branch curve singularities of type $W$”, Ukrainian Math. J., 61 (2009), 1257–1266 | MR

[16] Walker R. J., Algebraic Curves, Springer–Verlag, 1978 | MR