$S$-Embedded subgroups in finite groups
Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 139-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this survey paper several subgroup embedding properties related to permutability are introduced and studied.
Keywords: finite groups, permutability, $S$-permutability, seminormality, semipermutability.
@article{ADM_2012_13_2_a1,
     author = {A. Ballester-Bolinches and J. C. Beidleman and A. D. Feldman and H. Heineken and M. F. Ragland},
     title = {$S${-Embedded}  subgroups in finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {139--146},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a1/}
}
TY  - JOUR
AU  - A. Ballester-Bolinches
AU  - J. C. Beidleman
AU  - A. D. Feldman
AU  - H. Heineken
AU  - M. F. Ragland
TI  - $S$-Embedded  subgroups in finite groups
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 139
EP  - 146
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a1/
LA  - en
ID  - ADM_2012_13_2_a1
ER  - 
%0 Journal Article
%A A. Ballester-Bolinches
%A J. C. Beidleman
%A A. D. Feldman
%A H. Heineken
%A M. F. Ragland
%T $S$-Embedded  subgroups in finite groups
%J Algebra and discrete mathematics
%D 2012
%P 139-146
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a1/
%G en
%F ADM_2012_13_2_a1
A. Ballester-Bolinches; J. C. Beidleman; A. D. Feldman; H. Heineken; M. F. Ragland. $S$-Embedded  subgroups in finite groups. Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 139-146. http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a1/

[1] Kahled A. Al-Sharo, James C. Beidleman, Hermann Heineken, Matthew F. Ragland, “Some characterizations of finite groups in which semipermutability is a transitive relation”, Forum Math., 22:5 (2010), 855–862 | MR | Zbl

[2] A. Ballester-Bolinches, J. C. Beidleman, A. D. Feldman, “Some new characterizations of solvable PST-groups”, Ric. Mat. (to appear) | MR

[3] A. Ballester-Bolinches, J. C. Beildleman, A. D. Feldman, H. Heineken, M. F. Ragland, “Finite solvable groups in which semi-normality is a transitive relation”, Beitr. Algebra Geom. | DOI

[4] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups, de Gruyter Expositions in Mathematics, 53, Walter de Gruyter, Berlin, 2010 | DOI | MR | Zbl

[5] A. Ballester-Bolinches, R. Esteban-Romero, M. Ragland, “A note on finite PST-groups”, J. Group Theory, 10:2 (2007), 205–210 | DOI | MR | Zbl

[6] James C. Beidleman, Matthew F. Ragland, “Subnormal, permutable, and embedded subgroups in finite groups”, Cent. Eur. J. Math., 9:4 (2011), 915–921 | DOI | MR | Zbl

[7] B. Huppert, Finite groups, v. II, Grund. Math. Wiss., 134, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[8] B. Huppert, N. Blackburn, Finite groups, v. III, Grund. Math. Wiss., 243, Springer-Verlag, Berlin, 1982 | MR | Zbl

[9] V. O. Lukyanenko, A. N. Skiba, “On weakly $\tau$-quasinormal subgroups of finite groups”, Acta Math. Hungar., 125:3 (2009), 237–248 | DOI | MR | Zbl

[10] Vladimir O. Lukyanenko, Alexander N. Skiba, “Finite groups in which $\tau$-quasinormality is a transitive relation”, Rend. Semin. Mat. Univ. Padova, 124 (2010), 231–246 | DOI | MR | Zbl

[11] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New-York, 1982 | MR

[12] L. Wang, Y. Li, Y. Wang, “Finite groups in which ($S$-)-permutability is a transitive relation”, Int. J. Algebra, 2:1–4 (2008), 143–152 | MR | Zbl