Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2012_13_2_a1, author = {A. Ballester-Bolinches and J. C. Beidleman and A. D. Feldman and H. Heineken and M. F. Ragland}, title = {$S${-Embedded} subgroups in finite groups}, journal = {Algebra and discrete mathematics}, pages = {139--146}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a1/} }
TY - JOUR AU - A. Ballester-Bolinches AU - J. C. Beidleman AU - A. D. Feldman AU - H. Heineken AU - M. F. Ragland TI - $S$-Embedded subgroups in finite groups JO - Algebra and discrete mathematics PY - 2012 SP - 139 EP - 146 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a1/ LA - en ID - ADM_2012_13_2_a1 ER -
%0 Journal Article %A A. Ballester-Bolinches %A J. C. Beidleman %A A. D. Feldman %A H. Heineken %A M. F. Ragland %T $S$-Embedded subgroups in finite groups %J Algebra and discrete mathematics %D 2012 %P 139-146 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a1/ %G en %F ADM_2012_13_2_a1
A. Ballester-Bolinches; J. C. Beidleman; A. D. Feldman; H. Heineken; M. F. Ragland. $S$-Embedded subgroups in finite groups. Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 139-146. http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a1/
[1] Kahled A. Al-Sharo, James C. Beidleman, Hermann Heineken, Matthew F. Ragland, “Some characterizations of finite groups in which semipermutability is a transitive relation”, Forum Math., 22:5 (2010), 855–862 | MR | Zbl
[2] A. Ballester-Bolinches, J. C. Beidleman, A. D. Feldman, “Some new characterizations of solvable PST-groups”, Ric. Mat. (to appear) | MR
[3] A. Ballester-Bolinches, J. C. Beildleman, A. D. Feldman, H. Heineken, M. F. Ragland, “Finite solvable groups in which semi-normality is a transitive relation”, Beitr. Algebra Geom. | DOI
[4] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups, de Gruyter Expositions in Mathematics, 53, Walter de Gruyter, Berlin, 2010 | DOI | MR | Zbl
[5] A. Ballester-Bolinches, R. Esteban-Romero, M. Ragland, “A note on finite PST-groups”, J. Group Theory, 10:2 (2007), 205–210 | DOI | MR | Zbl
[6] James C. Beidleman, Matthew F. Ragland, “Subnormal, permutable, and embedded subgroups in finite groups”, Cent. Eur. J. Math., 9:4 (2011), 915–921 | DOI | MR | Zbl
[7] B. Huppert, Finite groups, v. II, Grund. Math. Wiss., 134, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[8] B. Huppert, N. Blackburn, Finite groups, v. III, Grund. Math. Wiss., 243, Springer-Verlag, Berlin, 1982 | MR | Zbl
[9] V. O. Lukyanenko, A. N. Skiba, “On weakly $\tau$-quasinormal subgroups of finite groups”, Acta Math. Hungar., 125:3 (2009), 237–248 | DOI | MR | Zbl
[10] Vladimir O. Lukyanenko, Alexander N. Skiba, “Finite groups in which $\tau$-quasinormality is a transitive relation”, Rend. Semin. Mat. Univ. Padova, 124 (2010), 231–246 | DOI | MR | Zbl
[11] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New-York, 1982 | MR
[12] L. Wang, Y. Li, Y. Wang, “Finite groups in which ($S$-)-permutability is a transitive relation”, Int. J. Algebra, 2:1–4 (2008), 143–152 | MR | Zbl