Fully invariant subgroups of an infinitely iterated wreath product
Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 85-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the infinitely iterated wreath product of cyclic groups $C_p$ of prime order $p$. We consider a generalized infinite wreath product as a direct limit of a sequence of finite $n$th wreath powers of $C_p$ with certain embeddings and use its tableau representation. The main result are the statements that this group doesn't contain a nontrivial proper fully invariant subgroups and doesn't satisfy the normalizer condition.
Keywords: wreath product, fully invariant subgroups.
@article{ADM_2011_12_2_a7,
     author = {Yuriy Yu. Leshchenko},
     title = {Fully invariant subgroups of an infinitely iterated wreath product},
     journal = {Algebra and discrete mathematics},
     pages = {85--93},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a7/}
}
TY  - JOUR
AU  - Yuriy Yu. Leshchenko
TI  - Fully invariant subgroups of an infinitely iterated wreath product
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 85
EP  - 93
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a7/
LA  - en
ID  - ADM_2011_12_2_a7
ER  - 
%0 Journal Article
%A Yuriy Yu. Leshchenko
%T Fully invariant subgroups of an infinitely iterated wreath product
%J Algebra and discrete mathematics
%D 2011
%P 85-93
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a7/
%G en
%F ADM_2011_12_2_a7
Yuriy Yu. Leshchenko. Fully invariant subgroups of an infinitely iterated wreath product. Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 85-93. http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a7/

[1] M. Dixon, T. A. Fournelle, “Some properties of generalized wreath products”, Compositio Math., 52:3 (1984), 355–372 | MR | Zbl

[2] M. Dixon, T. A. Fournelle, “Wreath products indexed by partially ordered sets”, Rocky Mt. J. Math., 16:1 (1986), 7–15 | DOI | MR | Zbl

[3] P. Hall, “Some constructions for locally finite groups”, J. London Math. Soc., 34 (1959), 305–319 | DOI | MR | Zbl

[4] P. Hall, “Wreath powers and characteristically simple groups”, Proc. Cambridge Phil. Soc., 58 (1962), 170–184 | DOI | MR | Zbl

[5] W. C. Holland, “The characterization of generalized wreath products”, J. Algebra, 13 (1969), 152–172 | DOI | MR | Zbl

[6] I. D. Ivanuta, “Sylow $p$-subgroups of the finitary symmetric group”, Ukrain. Mat. Zh., 15 (1963), 240–249 | MR

[7] L. Kaloujnine, “La structure des $p$-groupes de Sylow des groupes symetriques finis”, Ann. Sci. l'Ecole Norm. Super., 65 (1948), 239–276 | MR | Zbl

[8] N. V. Kroshko, V. I. Sushchansky, “Direct limits of symmetric and alternating groups with strictly diagonal embeddings”, Arch. Math. (Basel), 71 (1998), 173–182 | DOI | MR | Zbl

[9] Yu. Yu. Leshchenko, V. I. Sushchansky, “Sylow structure of homogeneous symmetric groups of superdegree $p^\infty$”, Mat. Stud., 22 (2004), 141–151 | MR | Zbl

[10] Yu. Yu. Leshchenko, “Characteristic subgroups of the infinitely iterated wreath product of elementary abelian groups”, Ukr. Math. Bull., 6:1 (2009), 37–50 | MR

[11] Yu. Yu. Leshchenko, “Infinitely iterated wreath power of elementary abelian groups”, Mat. Stud., 31 (2009), 12–18 | MR | Zbl

[12] Yu. Yu. Leshchenko, “The structure of one infinite wreath power construction of the regular group of the prime order $p$”, Mat. Stud., 28 (2007), 141–146 | DOI | MR | Zbl

[13] Yu. I. Merzlyakov, “About Kargapolov groups”, Dokl. Akad. Nauk SSSR, 322 (1992), 41–44 | MR | Zbl

[14] Yu. I. Merzlyakov, “Equisubgroups of unitriangular groups: a criterion of self normalizability”, Dokl. Russian Akad. Nauk, 50 (1995), 507–511 | MR

[15] V. I. Sushchansky, “A wreath product of elementary abelian groups”, Math. Notes, 11 (1972), 61–72 | MR