Fully invariant subgroups of an infinitely iterated wreath product
Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 85-93

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the infinitely iterated wreath product of cyclic groups $C_p$ of prime order $p$. We consider a generalized infinite wreath product as a direct limit of a sequence of finite $n$th wreath powers of $C_p$ with certain embeddings and use its tableau representation. The main result are the statements that this group doesn't contain a nontrivial proper fully invariant subgroups and doesn't satisfy the normalizer condition.
Keywords: wreath product, fully invariant subgroups.
@article{ADM_2011_12_2_a7,
     author = {Yuriy Yu. Leshchenko},
     title = {Fully invariant subgroups of an infinitely iterated wreath product},
     journal = {Algebra and discrete mathematics},
     pages = {85--93},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a7/}
}
TY  - JOUR
AU  - Yuriy Yu. Leshchenko
TI  - Fully invariant subgroups of an infinitely iterated wreath product
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 85
EP  - 93
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a7/
LA  - en
ID  - ADM_2011_12_2_a7
ER  - 
%0 Journal Article
%A Yuriy Yu. Leshchenko
%T Fully invariant subgroups of an infinitely iterated wreath product
%J Algebra and discrete mathematics
%D 2011
%P 85-93
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a7/
%G en
%F ADM_2011_12_2_a7
Yuriy Yu. Leshchenko. Fully invariant subgroups of an infinitely iterated wreath product. Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 85-93. http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a7/