Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2011_12_2_a6, author = {G. Kafkas and B. Ungor and S. Hal{\i}c{\i}oglu and A. Harmanci}, title = {Generalized symmetric rings}, journal = {Algebra and discrete mathematics}, pages = {72--84}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a6/} }
G. Kafkas; B. Ungor; S. Halıcıoglu; A. Harmanci. Generalized symmetric rings. Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 72-84. http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a6/
[1] N. Agayev, G. Gungoroglu, A. Harmanci and S. Halicioglu, “Central Armendariz Rings”, Bull. Malays. Math. Sci. Soc. (2), 34:1 (2011), 137–145 | MR | Zbl
[2] N. Agayev, A. Harmanci and S. Halicioglu, “Extended Armendariz Rings”, Algebras Groups Geom., 26:4 (2009), 343–354 | MR | Zbl
[3] N. Agayev, T. Ozen and A. Harmanci, “On a Class of Semicommutative Rings”, Kyungpook Math. J., 51 (2011), 283–291 | DOI | MR | Zbl
[4] D. D. Anderson and V. Camillo, “Armendariz rings and Gaussian rings”, Comm. Algebra, 26:7 (1998), 2265–2272 | DOI | MR | Zbl
[5] R. Antoine, “Nilpotent elements and Armendariz rings”, J. Algebra, 319:8 (2008), 3128–3140 | DOI | MR | Zbl
[6] E. Armendariz, “A note on extensions of Baer and p.p.-rings”, J. Austral. Math. Soc., 18 (1974), 470–473 | DOI | MR | Zbl
[7] G. F. Birkenmeier, J. Y. Kim and J. K. Park, “On extensions of Baer and quasi-Baer Rings”, J. Pure Appl. Algebra, 159 (2001), 25–42 | DOI | MR | Zbl
[8] G. F. Birkenmeier, J. Y. Kim and J. K. Park, “Principally quasi-Baer rings”, Comm. Algebra, 29:2 (2001), 639–660 | MR | Zbl
[9] P. M. Cohn, “Reversible rings”, Bull. London Math. Soc., 31:6 (1999), 641–648 | DOI | MR | Zbl
[10] R. C. Courter, “Finite Dimensional Right Duo Algebras are Duo”, Proc. Amer. Math. Soc., 84:2 (1982), 157–161 | MR | Zbl
[11] W. D. Gwynne and J. C. Robson, “Completions of non-commutative Dedekind prime rings”, J. London Math. Soc., 4:2 (1971), 346–352 | DOI | MR | Zbl
[12] Y. Hirano, “Some Studies of Strongly $\pi$-Regular Rings”, Math. J. Okayama Univ., 20:2 (1978), 141–149 | MR | Zbl
[13] S. U. Hwang, C. H. Jeon and K. S. Park, “A Generalization of Insertion of Factors Property”, Bull. Korean Math. Soc., 44:1 (2007), 87–94 | DOI | MR | Zbl
[14] N. Jacobson, The theory of rings, Amer. Math. Soc. Math. Surveys II, New York, 1943
[15] D. Khurana, G. Marks and A. Srivastava, “On unit-central rings”, Advances in ring theory, Trends Math., Birkhauser-Springer Basel AG, Basel, 2010, 205–212 | MR | Zbl
[16] J. Lambek, “On the representation of modules by sheaves of factor modules”, Canad. Math. Bull., 14 (1971), 359–368 | MR | Zbl
[17] L. Liang and L. Wang and Z. Liu, “On a generalization of semicommutative rings”, Taiwanese J. Math., 11:5 (2007), 1359–1368 | MR | Zbl
[18] G. Marks, “Reversible and symmetric rings”, Journal of Pure and Applied Algebra, 174:3 (2002), 311–318 | DOI | MR | Zbl
[19] L. Ouyang and H. Chen, “On weak symmetric rings”, Comm. Algebra, 38:2 (2010), 697–713 | DOI | MR | Zbl
[20] M. B. Rege and S. Chhawchharia, “Armendariz rings”, Proc. Japan Acad. Ser. A, Math. Sci., 73 (1997), 14–17 | DOI | MR | Zbl
[21] G. Shin, “Prime ideals and Sheaf Represantations of a Pseudo Symmetric ring”, Trans. Amer. Math. Soc., 184 (1973), 43–69 | DOI | MR