Generalized symmetric rings
Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 72-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce a class of rings which is a generalization of symmetric rings. Let $R$ be a ring with identity. A ring $R$ is called central symmetric if for any $a$, $b, c\in R$, $abc = 0$ implies $bac$ belongs to the center of $R$. Since every symmetric ring is central symmetric, we study sufficient conditions for central symmetric rings to be symmetric. We prove that some results of symmetric rings can be extended to central symmetric rings for this general settings. We show that every central reduced ring is central symmetric, every central symmetric ring is central reversible, central semmicommutative, 2-primal, abelian and so directly finite. It is proven that the polynomial ring $R[x]$ is central symmetric if and only if the Laurent polynomial ring $R[x, x^{-1}]$ is central symmetric. Among others, it is shown that for a right principally projective ring $R$, $R$ is central symmetric if and only if $R[x]/(x^n)$ is central Armendariz, where $n\geq 2~$ is a natural number and $(x^n)$ is the ideal generated by $x^n$.
Keywords: symmetric rings, central reduced rings, central symmetric rings, central reversible rings, central semicommutative rings, central Armendariz rings, 2-primal rings.
@article{ADM_2011_12_2_a6,
     author = {G. Kafkas and B. Ungor and S. Hal{\i}c{\i}oglu and A. Harmanci},
     title = {Generalized symmetric rings},
     journal = {Algebra and discrete mathematics},
     pages = {72--84},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a6/}
}
TY  - JOUR
AU  - G. Kafkas
AU  - B. Ungor
AU  - S. Halıcıoglu
AU  - A. Harmanci
TI  - Generalized symmetric rings
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 72
EP  - 84
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a6/
LA  - en
ID  - ADM_2011_12_2_a6
ER  - 
%0 Journal Article
%A G. Kafkas
%A B. Ungor
%A S. Halıcıoglu
%A A. Harmanci
%T Generalized symmetric rings
%J Algebra and discrete mathematics
%D 2011
%P 72-84
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a6/
%G en
%F ADM_2011_12_2_a6
G. Kafkas; B. Ungor; S. Halıcıoglu; A. Harmanci. Generalized symmetric rings. Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 72-84. http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a6/

[1] N. Agayev, G. Gungoroglu, A. Harmanci and S. Halicioglu, “Central Armendariz Rings”, Bull. Malays. Math. Sci. Soc. (2), 34:1 (2011), 137–145 | MR | Zbl

[2] N. Agayev, A. Harmanci and S. Halicioglu, “Extended Armendariz Rings”, Algebras Groups Geom., 26:4 (2009), 343–354 | MR | Zbl

[3] N. Agayev, T. Ozen and A. Harmanci, “On a Class of Semicommutative Rings”, Kyungpook Math. J., 51 (2011), 283–291 | DOI | MR | Zbl

[4] D. D. Anderson and V. Camillo, “Armendariz rings and Gaussian rings”, Comm. Algebra, 26:7 (1998), 2265–2272 | DOI | MR | Zbl

[5] R. Antoine, “Nilpotent elements and Armendariz rings”, J. Algebra, 319:8 (2008), 3128–3140 | DOI | MR | Zbl

[6] E. Armendariz, “A note on extensions of Baer and p.p.-rings”, J. Austral. Math. Soc., 18 (1974), 470–473 | DOI | MR | Zbl

[7] G. F. Birkenmeier, J. Y. Kim and J. K. Park, “On extensions of Baer and quasi-Baer Rings”, J. Pure Appl. Algebra, 159 (2001), 25–42 | DOI | MR | Zbl

[8] G. F. Birkenmeier, J. Y. Kim and J. K. Park, “Principally quasi-Baer rings”, Comm. Algebra, 29:2 (2001), 639–660 | MR | Zbl

[9] P. M. Cohn, “Reversible rings”, Bull. London Math. Soc., 31:6 (1999), 641–648 | DOI | MR | Zbl

[10] R. C. Courter, “Finite Dimensional Right Duo Algebras are Duo”, Proc. Amer. Math. Soc., 84:2 (1982), 157–161 | MR | Zbl

[11] W. D. Gwynne and J. C. Robson, “Completions of non-commutative Dedekind prime rings”, J. London Math. Soc., 4:2 (1971), 346–352 | DOI | MR | Zbl

[12] Y. Hirano, “Some Studies of Strongly $\pi$-Regular Rings”, Math. J. Okayama Univ., 20:2 (1978), 141–149 | MR | Zbl

[13] S. U. Hwang, C. H. Jeon and K. S. Park, “A Generalization of Insertion of Factors Property”, Bull. Korean Math. Soc., 44:1 (2007), 87–94 | DOI | MR | Zbl

[14] N. Jacobson, The theory of rings, Amer. Math. Soc. Math. Surveys II, New York, 1943

[15] D. Khurana, G. Marks and A. Srivastava, “On unit-central rings”, Advances in ring theory, Trends Math., Birkhauser-Springer Basel AG, Basel, 2010, 205–212 | MR | Zbl

[16] J. Lambek, “On the representation of modules by sheaves of factor modules”, Canad. Math. Bull., 14 (1971), 359–368 | MR | Zbl

[17] L. Liang and L. Wang and Z. Liu, “On a generalization of semicommutative rings”, Taiwanese J. Math., 11:5 (2007), 1359–1368 | MR | Zbl

[18] G. Marks, “Reversible and symmetric rings”, Journal of Pure and Applied Algebra, 174:3 (2002), 311–318 | DOI | MR | Zbl

[19] L. Ouyang and H. Chen, “On weak symmetric rings”, Comm. Algebra, 38:2 (2010), 697–713 | DOI | MR | Zbl

[20] M. B. Rege and S. Chhawchharia, “Armendariz rings”, Proc. Japan Acad. Ser. A, Math. Sci., 73 (1997), 14–17 | DOI | MR | Zbl

[21] G. Shin, “Prime ideals and Sheaf Represantations of a Pseudo Symmetric ring”, Trans. Amer. Math. Soc., 184 (1973), 43–69 | DOI | MR