Quasi-duo partial skew polynomial rings
Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 53-63
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider rings $R$ with a partial action $\alpha$ of $\mathbb Z$ on $R$. We give necessary and sufficient conditions for partial skew polynomial rings and partial skew Laurent polynomial rings to be quasi-duo rings and in this case we describe the Jacobson radical. Moreover, we give some examples to show that our results are not an easy generalization of the global case.
Keywords:
partial action; quasi-duo; Jacobson radical; partial skew polynomial rings.
@article{ADM_2011_12_2_a4,
author = {Wagner Cortes and Miguel Ferrero and Luciane Gobbi},
title = {Quasi-duo partial skew polynomial rings},
journal = {Algebra and discrete mathematics},
pages = {53--63},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a4/}
}
Wagner Cortes; Miguel Ferrero; Luciane Gobbi. Quasi-duo partial skew polynomial rings. Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 53-63. http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a4/