Quasi-duo partial skew polynomial rings
Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 53-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider rings $R$ with a partial action $\alpha$ of $\mathbb Z$ on $R$. We give necessary and sufficient conditions for partial skew polynomial rings and partial skew Laurent polynomial rings to be quasi-duo rings and in this case we describe the Jacobson radical. Moreover, we give some examples to show that our results are not an easy generalization of the global case.
Keywords: partial action; quasi-duo; Jacobson radical; partial skew polynomial rings.
@article{ADM_2011_12_2_a4,
     author = {Wagner Cortes and Miguel Ferrero and Luciane Gobbi},
     title = {Quasi-duo partial skew polynomial rings},
     journal = {Algebra and discrete mathematics},
     pages = {53--63},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a4/}
}
TY  - JOUR
AU  - Wagner Cortes
AU  - Miguel Ferrero
AU  - Luciane Gobbi
TI  - Quasi-duo partial skew polynomial rings
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 53
EP  - 63
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a4/
LA  - en
ID  - ADM_2011_12_2_a4
ER  - 
%0 Journal Article
%A Wagner Cortes
%A Miguel Ferrero
%A Luciane Gobbi
%T Quasi-duo partial skew polynomial rings
%J Algebra and discrete mathematics
%D 2011
%P 53-63
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a4/
%G en
%F ADM_2011_12_2_a4
Wagner Cortes; Miguel Ferrero; Luciane Gobbi. Quasi-duo partial skew polynomial rings. Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 53-63. http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a4/

[1] S. S. Bedi, J. Ram, “Jacobson radical of skew polynomial rings and skew group rings”, Israel J. of Math., 35:4 (1980), 327–337 | DOI | MR

[2] W. Cortes, M. Ferrero, “Partial skew polynomial rings: prime and maximal ideals”, Comm. in Algebra, 35 (2007), 1183–1199 | DOI | MR | Zbl

[3] M. Dokuchaev, R. Exel, “Associativity of crossed products by partial actions, enveloping actions and partial representations”, Trans. Am. Math. Soc., 357:5 (2004), 1931–1952 | DOI | MR

[4] M. Ferrero, J. Lazzarin, “Partial actions and partial skew group rings”, Journal of Algebra, 319 (2008), 5247–5264 | DOI | MR | Zbl

[5] C. Huh, S. H. Jang, C. On Kim and Y. Lee, “Rings whose maximal one-sided ideals are two-sided”, Bull. Korean Math. Soc., 39:3 (2002), 411–422 | MR | Zbl

[6] T. Y. Lam, A. S. Dugas, “Quasi-duo rings and stable range descent”, J. Pure and Appl. Alg., 195 (2005), 243–259 | DOI | MR | Zbl

[7] A. Leroy, J. Matczuk and E. R. Puczylowski, “Quasi-duo skew polynomial rings”, J. Pure and Appl. Alg., 212 (2008), 1951–1959 | DOI | MR | Zbl

[8] A. Leroy, J. Matczuk and E. R. Puczylowski, A description of quasi-duo $\mathbb Z$-graded rings, preprint